CITY OF SEASIDE
 PLANNING COMMISSION AGENDA

Tuesday, August 1, 2023 6:00 PM

To provide public comment for Planning Commission meetings, participants should register prior to the meeting. Please complete the form linked below to offer public comment at an upcoming Planning Commission meeting. You may provide public comment using the following methods:

1. In-person (meetings are held at Seaside City Hall, 989 Broadway, Seaside, OR)
2. Via Zoom web conference or telephone (obtain link and register at cityofseaside.us)
3. Written comments may be submitted using this form, via e-mail to publiccomment@cityofseaside.us or in person at City Hall (989 Broadway, Seaside, OR).

If you are providing public comment in person or via Zoom, please keep in mind your comments will be limited to three (3) minutes. If your comments will be longer than three (3) minutes, please submit your comment in writing and utilize your three (3) minutes to summarize your written document. Please review the Public Comment Rules of Conduct prior to the meeting.

1. CALL TO ORDER
2. PLEDGE OF ALLEGIANCE
3. ROLL CALL
4. APPROVAL OF MINUTES
5. DECLARATION OF POTENTIAL CONFLICT OF INTEREST
6. PUBLIC HEARING
a) 769-23-000048-NVST: The Planning Commission will be conducting a compliance review of the Vacation Rental Dwelling (VRD) located at $46114^{\text {th }}$ Ave. (T6-R10-16DA-06801). The VRD was originally approved on July 31, 2019. Since that time, staff has received several complaints concerning the VRD's compliance with the conditions of approval. The Commission will be re-evaluating the conditional use permit to determine if the conditions of approval should be amended or if the permit should be denied.
b) 769-23-000022-PLNG: A Conditional Use and Variance request by Robert Leatherman located at 2175 S Prom for a four (4) bedroom Vacation Rental Dwelling with a maximum occupancy of ten (10) persons regardless of age. In addition to the conditional use, the applicant is requesting a variance to the front yard landscaping requirement.
c) 769-23-000030-PLNG: A conditional use request by Steve Olstedt and Ryan Osburn, Cross Creek Land 1 LLC, for a 74-unit housing development (nine 6-plexes and six 4 plexes) located at 2315 N Roosevelt Dr. within the General Commercial (C-3) zone. In conjunction with this request, the applicant has submitted a Highway Overlay Zone request and a preliminary subdivision plat that would create a separate lot for each of the housing units and common ownership of the access and off-street parking areas.

7. ORDINANCE ADMINISTRATION:

8. PUBLIC COMMENTS Members of the public may use this time to provide comment to the Planning Commission on items that are not scheduled on this agenda for a public hearing or public comment. Speaking time is limited to three minutes.

9. PLANNING COMMISSION \& STAFF COMMENTS:

10. ADJOURNMENT

Complete copies of the Current Commission meeting Agenda, Packets, and Minutes can be viewed at: www.cityofseaside.us.

All meetings other than executive sessions are open to the public. When appropriate, any public member desiring to address the Commission may be recognized by the presiding officer. Remarks are limited to the question under discussion except during public comment. This meeting is handicapped accessible. Please let us know at 503-7385511 if you will need any special accommodation to participate in this meeting.

Planning Commission Meeting

I. Call to Order and Pledge of Allegiance

II. Roll Call

Council Members	P/A
Robin Montero, Chairperson	\mathbf{P}
Kathy Kleczek, Vice Chairperson	\mathbf{P}
Brandon Kraft	\mathbf{P}
Lou Neubecker	\mathbf{P}
Gretchen Stahmer	\mathbf{P}
Chris Rose	\mathbf{P}
Don Johnson	\mathbf{P}

Staff Members	
Jeff Flory, Community Development Director	Jordan Sprague, Community Development Administrative Assistant

Visitors in Chambers (attendance sheet)	Visitors on Zoom
Seth Morrisey	
Matt Rose	
Jon Wickersham	
Russ Earl	
Joe Ballard	
Randall Henderson	
John Nagel	

III. Approval of Minutes

May 2, 2023 minutes were adopted as written
IV. Declaration of Potential Conflict of Interest

Commissioner Kraft declared potential conflict of interest for 769-23-000016-PLNG. Chair Montero declared potential conflict 769-23-000016-PLNG. Commissioner Rose declared a conflict of interest for 769-23-000006-PLNG.

V. Public Hearings

769-23-000006-PLNG: The applicant, Seth Morrisey, is requesting a Conditional Use and Highway Overlay Zone review for a self-storage unit facility.

Community Development Director Flory presented the staff report, decision criteria findings, condition, and conclusions.

Seth Morrisey, owner, spoke on behalf of the application.
Matt Rose, project designer, spoke in favor of the application.

Chair Montero opened the discussion to those in favor. There were none.
Chair Montero opened the discussion to those in opposition. There were none.
Chair Montero opened the discussion to the Commission.
Commissioner Kraft expressed concerns regarding Highway 101 access.
Vice Chair Kleczek questioned the ingress and egress of the property and the uses of surrounding properties.

Vice Chair Kleczek discussed vehicle and pedestrian safety and safety lighting for the complex.
Commissioner Stahmer requested clarification regarding the traffic impact data.
Vice Chair Kleczek recommended an additional condition for no vehicle or outside storage.

Motion:	Motion to approve 769-23-000006-PLNG with a condition to require all storage to be contained within the buildings.				
Moved:	Neubecker				
Seconded:	Kleczek	Nays: 0	Absent: $\mathbf{0}$	Recused: Rose	
Ayes:	Neubecker, Kleczek, Montero, Kraft, Stahmer, Johnson				
Passed:	$\mathbf{6 - 0}$				

769-23-000014-PLNG: The applicant, Joe Ballard, is requesting two new sign frames to hold temporary banners throughout the year.

Community Development Director Flory presented the staff report, decision criteria findings, condition, and conclusions.

Joe Ballard, applicant, spoke on behalf of the application.
Chair Montero opened the discussion to those in favor. There were none.
Chair Montero opened the discussion to those in opposition. There were none.
Chair Montero opened the discussion to the Commission.
Commissioner Stahmer asked for clarification if these signs were in addition to the newly installed sign.

Vice Chair Kleczek requested a description of the signs to be installed.
Chair Montero asked about the temporary sign holders that were previously used and expressed concerns regarding the amount of signage along Wahanna Rd.

Motion:	Motion to approve 769-23-000014-PLNG with the conditions provided in the staff report.			
Moved:	Johnson			
Seconded:	Neubecker			
Ayes:	Rose, Neubecker, Montero, Kraft, Stahmer, Johnson	Nays: Kleczek	Absent: $\mathbf{0}$	Recused: $\mathbf{0}$
Passed:	$\mathbf{6 - 1}$			

769-23-000016-PLNG: The applicant, North Coast Land Conservancy, is requesting a conditional use request to construct an approximate 3,500 sq. ft . community center and office building.

Community Development Director Flory presented the staff report, decision criteria findings, condition, and conclusions.

Jon Wickersham, North Coast Land Conservancy, spoke on behalf of the application.
Randall Henderson, North Coast Land Conservancy, spoke on behalf of the application.
Vito Cerelli, O'Brien Design + Build, spoke on behalf of the application.
Chair Montero opened the discussion to those in favor.
Russ Earl spoke in favor of the project.
Chair Montero opened the discussion to those in opposition. There were none.
Chair Montero opened the discussion to the Commission.
Commissioner Johnson suggested to allow the non-ADA parking spaces to be gravel.
Commissioner Stahmer expressed concerns regarding traffic increase.
Commissioner Kraft expressed concerns regarding occupant capacity.

Motion:	Motion to approve 769-23-000016-PLNG with the conditions provided in the staff report and the variance for allowing the parking to not be paved.			
Moved:	Neubecker			
Seconded:	Kraft			
Ayes:	Rose, Neubecker, Kleczek, Montero, Kraft, Stahmer, Johnson	Nays: 0	Absent: 0	Recused: 0
Passed:	7-0			

VI. Ordinance Administration

There were none.

VII. Public Comments

There were none.

VIII. Planning Commission and Staff Comments

Commissioner Kraft requested an update of the comprehensive plan update.
Vice Chair Kleczek provided a reasoning for the "no" vote on 769-23-000014-PLNG.
Chair Montero asked if there were items on the July Planning Commission agenda.

IX. Adjournment at 7:13 PM.

Approved by Commission on: \qquad

Minutes prepared by:
Jordan Sprague, Administrative Assistant

ROBIN MONTERO, Chairperson

Planning Commission Staff Report

APPLICATION(S):
 MEETING DATE: PUBLIC HEARING:
 Report Date:
 Applicant:
 Owner:
 Location:
 Major Street Access:
 Parcel Number(s) \& Size:
 Parcel Zoning:
 Adjacent Zoning:
 Current Use of Parcel:
 Adjacent Uses:
 Previous Meetings:
 Previous Approvals:
 Type of Action:
 Land Use Authority:
 Future Routing:
 Planner:

769-23-000048-NVST - VRD Compliance Review of File Number 19032VRD

August 1, 2023
Yes
July 21, 2023
Edward "Ted" Mittelstaedt
Edward and Jean Mittelstaedt
461 14 ${ }^{\text {th }}$ Ave., Seaside, OR 97138
Beach Dr.
T6-R10-16DA-06801- Approximately .11 acres
Medium-Density Residential ($\mathrm{R}-2$)
Medium-Density Residential (R-2)
Single-Family Residential
Single-Family Residential
None
None
Administrative
Planning Commission
None
Jeff Flory, Community Development Director

A. Summary:

The Planning Commission will be conducting a compliance review of the Vacation Rental Dwelling (VRD) located at $46114^{\text {th }}$ Ave. The VRD was originally approved on July 31, 2019. Since that time, staff has received several complaints concerning the VRD's compliance with the conditions of approval. The Commission will be reevaluating the conditional use permit to determine if the conditions of approval should be amended or if the permit should be denied.

Staff Recommendation:

Staff recommends the Planning Commission conduct a public hearing on the application, take public comments, and review and discuss the request. Unless submitted comments or other clarifications or justifications are needed, staff recommends the Commission adopt the findings, justification statements, and conclusions in this report and move to modify Conditions 2, 3, and 5 of the original conditions of approval as well as add Condition 21 and Condition 22. (Page 15)

B. Exhibits:

1. Original Application Packet
2. Public Comments from 2019 Public Notice
3. VRD Complaint Reports
C. Location: $46114^{\text {th }}$ Ave (T6-R10-S16DA-TL6801)

D. Background:

The applicant, Edward "Ted" Mittelstaedt, received conditional approval to operate a Vacation Rental Dwelling at $46114^{\text {th }}$ Ave. on July 31, 2019. Ted applied for a 3-bedroom VRD to have a maximum occupancy of nine (9) persons over the age of three, no more than ten (10) persons regardless of age. The applicant was only granted an occupancy of six (6) persons over the age of three, no more than ten (10) persons regardless of age due to the inability to park three vehicles on the property while still meeting the required yard area landscaping provisions in Section 6.137 of the Zoning Ordinance.

E. Process:

This request is being reviewed under Article 6, and Article 10 of the Seaside Zoning Ordinance. Article 6 establishes the criteria for conditional uses and Article 10 establishes the process and procedures that are applicable to this request. The specific review criterion for Vacation Rental Dwellings is included in Section 6.137 of the Ordinance. Staff is also reviewing compliance with the original conditions of approval that were issued when this application was approved in 2019.
F. Community Review:

Notice of this public hearing was published in the Daily Astorian on July 13, 2023. Additionally, a mailed notice was sent on July 11, 2023, to all property owners within 100ft of the subject property.

G. Written Comments:

At the time of this report, no comments have been submitted to the Community Development Department.

H. Zoning Ordinance Criteria for a Conditional Use:

Pursuant to Section 6.137, Vacation Rental Dwellings (VRDs) within the R-2 and R-3 zones shall be reviewed by the Planning Commission whenever the surrounding VRD density is 20% or greater. A permit shall be issued as an accessory use provided the applicant can demonstrate by written application that all of the following standards are met:
a. Parking. One 9' x 18' off-street space will be provided for each bedroom in the unit, but in no event shall fewer than two spaces be provided.

Finding: The applicant's original site plan shows three (3) side-by-side parking spaces in the front yard area. The three spaces take up more than 50% of the required landscaping. The applicant's occupancy was reduced from the requested nine (9) persons over the age of three to six (6) as a result of only having space for two cars. This criterion is met as it has space for the required two parking spaces however, the current parking configuration is in violation of the Seaside Zoning Ordinance.
b. Number of Occupants. The maximum number of occupants cannot exceed three persons (over the age of three) per bedroom. The maximum occupancy, along with good neighbor rules, shall remain posted inside the front door in a conspicuous place. It is the owner's responsibility to ensure the renters are aware of these limitations.

The number of overnight renters or the maximum number of occupants may be reduced by the Code Enforcement Officer or Fire Marshal at the time of Inspection for valid code reasons.

Finding: The applicant requested an occupancy of nine (9) persons over the age of three however, the occupancy was reduced to six (6) due to parking constraints. The dwelling contains three bedrooms and allowing all three rooms to be used is contributing to the number of vehicles brought by guests. The owner is responsible for ensuring renters are aware of the occupancy limitations. This criterion is met.
c. Residential yard areas. Front, side, and rear yards must maintain a residential appearance by limiting off street parking within yard areas. At least 50% of each yard area which is not occupied by buildings must be landscaped in some fashion so that parking will not dominate the yard.

Finding: The applicant's original site plan showed three parking spaces that would take up more than 50\% of the required yard area. The applicant had a tree planted in the required yard area that was part of his landscaping. The applicant has since removed the tree and now allows three vehicles to park side by side

The three parking spaces that are currently being utilized take up more than 50% of the required yard area. Based on the applicant's site plan, the applicant's required front yard area not covered by a building is approximately 931.94 sq. ft. Three (3) side-by-side, $9 f t \times 18 f t$, parking spaces take up 486 sq. ft. (52.14 \%) of the required yard area. The applicant's current parking configuration violates this section of the ordinance.

The applicant will need to remove a parking space so that no more than 50% of the required yard area is utilized for parking. Additionally, the applicant's parking area is not clearly defined and there is no delineation between the parking area and landscaping. The applicant will be required to install permanent landscaping that delineates the parking spaces from the landscaping. This criterion is not met due to parking taking up more than 50\% of the required front yard area.
d. Local responsible party. A local responsible party that permanently resides within the County must be identified by the owner. The responsible party will serve as an initial contact person if there are questions regarding the operation of the VRD. The owner shall provide the telephone number of the local contact person to the City, and to the immediate neighbors within the notification area (within 100' of the subject property).

Finding: The applicant lists Vacasa as their local contact. Vacasa's response to the complaints has not been sufficient as the same parking complaint has repeatedly occurred. Further steps are needed to correct this issue and prevent these types of complaints from recurring. This criterion is not met due to a lack of response to complaints by the local contact.
e. Spatial distribution requirements. Within the medium density residential (R-2) zones and high density residential (R-3) zones, not more than $\mathbf{2 0 \%}$ of the properties within 100' of the subject property can be currently licensed for VRD use without Planning Commission review based on the following additional criteria:

1. The use of the property as a VRD will be compatible with the surrounding land uses.
2. The VRD will not contribute to excessive parking congestion on site or along adjacent streets.

A decision by the Commission to approve a VRD request may include conditions that would restrict the number of renters or total occupants in the VRD.

Finding: The density of surrounding VRDs within 100ft of the applicant's property was 20\%. The applicant's original application was not reviewed by the Planning Commission as the density was not more than 20\%. At the time of the original approval in 2019. The current density of surrounding VRDs is 33.33\%. This criterion is met.

Additional Criteria:

1. The use of the property as a VRD will be compatible with the surrounding land uses.

Finding: The approval of a VRD at this location was compatible with the surrounding land uses as this is still a predominately residential neighborhood. However, the operation of a VRD at this property has generated numerous complaints that have negatively affected the neighbors. The multiple, repeated, parking complaints have caused this VRD to no longer be compatible with the surrounding, residential uses. Staff recommends a probationary period of 6 months to allow the applicant an opportunity to demonstrate the operation of the VRD is compatible with surrounding land uses. This criterion is not met as the number of complaints has made this VRD incompatible with surrounding land uses.

1. The VRD will not contribute to excessive parking congestion on site or along adjacent streets.

Finding: The documented complaints have shown this VRD has contributed to excessive parking congestion on-site and along the adjacent street, $14^{\text {th }}$ Ave. The property owner and the property management company have not taken sufficient steps to address the repeated violations. Additional conditions may be necessary to bring the VRD into compliance with the ordinance. This criterion is not met as the majority of the complaints involve excessive parking congestion on-site and along the adjacent street.

I. Advertising:

Airbnb: About this space

The space

Seaside Turtle Terrace

Whether you're looking to entertain loved ones or simply relax in a beautiful coastal setting, you'll be able to do it all at this Seaside home just a few blocks from the beach. Enjoy an expansive deck and backyard, comfortable leather furnishings, and a private firepit to gather around each evening when fire season is not in effect - all in a prime location close to the sand, the Seaside Promenade, and downtown.

Additional amenities include a level 2 electric vehicle charger in the garage.

If you head less than two blocks west, you'll find an access point to the ocean beach and the end of the Seaside Promenade. Downtown Seaside is within walking distance, just three-quarters of a mile south along the river, offering superb dining options. You can also feed the seals at the historic Seaside Aquarium on the Promenade, hop on the Seaside Carousel inside the mall, or tee off at one of the five beautiful golf courses between Seaside and Astoria.

THINGS TO KNOW

4 dog(s) are welcome in this home. No other animals are allowed without specific Vacasa approval.

Parking notes: There is free parking for 2 vehicles.
Security camera details: There are two active security cameras on-site: one above the garage door focused on the street and parking area and one in the back of the garage focused on the entrance to the garage and the backyard.
Damage waiver: The total cost of your reservation for this Property includes a damage waiver fee which covers you for up to $\$ 3,000$ of accidental damage to the Property or its contents (such as furniture, fixtures, and appliances) as long as you report the incident to the host prior to checking out. More information can be found from the "Additional rules" on the checkout page.

Due to local laws or HOA requirements, guests must be at least 21 years of age to book. Guests under 21 must be accompanied by a parent or legal guardian for the duration of the reservation.

Where you'll sleep

Finding: The advertising for this property states there is parking for two vehicles but it does not restrict or limit the number of vehicles that guests bring. The property is advertised on Airbnb, VRBO, and Vacasa's website. All of the listing language between the different booking platforms is similar. The property is advertised as a three-bedroom with the bed configuration listed above. Three bedrooms with only king and queen beds may be inviting three separate families to rent the property at the same time. There is not enough parking area to accommodate three vehicles without violating the landscaping provisions in the ordinance. The applicant's bedroom configuration and advertising need to be remedied so that there are only two bedrooms available and only two bedrooms advertised.

J. Reviews:

VRBO:

4/5 Good

Stacy S.
Sep 21, 2022
()) Liked: Cleanliness

Turtle terrace
The property was fantastic! Very comfortable and clean. Instead of vrbo, Vacasa was in charge, we had questions .. The only phone number given was some Vacasa central place - they had no idea about anything about the property. It would've been nice to immediately receive the phone number of the property manager or whoever was familiar with it. . We gave up. Also there was very generic instructions on close out Need more specific info on what is excepted, about recycling, leave trash in , etc.

See less
Stayed 2 nights in Sep 2022
030

1/5 Terrible

TEAL S., EAGLE, IDAHO

Sep 10, 2021
Harrassment about parking
Kept getting harrassed about the parking situation, when it was the house across the street. They have parties and shoot fireworks off every night since they rent out the ex-large parking space. The owners of the house are not aware of what's going on. Sorry 1 neighbor has ruin it, but will never will be back.

Stayed 3 nights in Aug 2021
030
Response from VrboOwner on Jun 20, 2023
Hello Teal: Thank you for staying with us! We are so glad you had a great time! We take guest feedback seriously and have forwarded this information to the local staff so they can review and update the home as needed for future guests. We will be sure to follow up with the appropriate parties regarding your experience. We hope to have the opportunity to host you again soon!

Airbnb:

Chelsea

November 2022

Overall the house is dated but nice and spacious. The location is really the kicker here. Roughly 2 blocks to the beach and .08 miles to downtown which you can walk from the promenade. The fenced in back yard was a plus for our pups. There were lots of puzzles/games. Our experience with cleanliness was the problem and the lack of communication from the host. Upon arrival the house reeked of marijuana, although this is suppose to be a "no smoking" property. Don't expect them to actually help you with any concerns, they say the are more than happy to help and then never respond. Caution of the fan in the upstairs room, it was covered in over an inch of dust, just disgusting. I would recommend this home for the location but there were other options nearby that may be better.

Response from Vacasa Oregon

November 2022

Thank you for taking the time to share your experience, Chelsea. We are happy to hear that our home provided a suitable location for your trip! That being said, we are deeply sorry to hear that you had issues with the cleanliness of the home and for our lack of follow-up. Please know that this does not reflect our standards of customer service and we greatly appreciate you bringing this to our attention. We welcome your feedback as a means to improve and will be sure to follow up with the appropriate parties regarding your experience. We hope we can invite you back to provide you with the 5-star stay that we know we can provide!

Oi Nerissa
 March 2022

This comfortable house is close to the beach and has a great deck to hang outside. However, it's fairly "lived in" and is needing minor repairs throughout the house, which add up to many annoyances.
Note that not only is the third bedroom down in the basement, you have to go through stairs and basement areas to get to it - it feels very uninviting and the bed is very high (too high for older and younger folks), and the box spring is very stained.
The primary reason for a 3-star review, however, is that Vacasa was almost completely unresponsive to questions and obviously isn't caring for the house like it should be. We found lots of old dog poop in the yard, things like power strips not functioning, had to remove multiple smoke alarms that were chirping during our stay (including high up in the vaulted ceiling at 5am), had a doorknob so loose it almost fell off, no instructions for the fireplace or the complex TV setup, and zero response from Vacasa when asked about these things.

Abstract

Very clean! Fully stocked kitchen. Easy check-in. Loved the fire stove which we were able to use at all times of the day. Good location - just minutes from everything you need. Easy walking access to the beach. Lots of puzzles and games. My only concern was that we had 3 vehicles and we were only given a google search link to parking in the area which doesn't always give accurate information or any information at all. The city is very strict about parking on the street and having more than 2 cars in your driveway overnight and the neighbors will complain. We ended up parking the 3rd vehicle on Necanicum Dr since there were no signs indicating 'no overnight parking' and we were fine. This might be more difficult in the summertime, however. You would think if you advertise being able to accommodate 6 guests (more pre-COVID) you would have more information for a 3rd vehicle. Other than that, everything was great! Thank you!

Bernard
June 2020
Vacasa keeps you on hold for a long time to reach someone by phone.

> Response from Vacasa Oregon vecissa
> July 2020
> Thank you for staying with us, Bernard. We apologize for the communication issues impacting your visit. While our guest services team has experienced an unprecedented demand in light of the developing global health crisis, we are continuing to adapt and adjust our efforts to best meet the needs of our guests. We hope to host you for a great vacation in the future.

Vacasa's Website:

Jessica C. Apr 2022
The home has a lot of space and very comfortable.
With that being said the master shower drain is running slow and there is no way to let anyone know. Vacasa is not easy to communicate with and everything seem automated. It was hard to figure out somethings but we are resourceful people.
If this home was managed by a local management team it would be a great place. Besides not being able to use one of the showers great place.

Findings: While there are several reviews on this property since 2020, the screenshots above show some of the reviews that indicate compliance issues with this VRD. Several reviews describe issues with guests being able to communicate with the property management company. Some reviews describe having problems with bringing more than two vehicles and complaints of being harassed due to parking the extra vehicles on the street. The reviews from guests who have stayed at the property indicate there are compliance issues with parking and a lack of communication from the VRD's local contact.

K. Complaint Summary:

The Community Development Department categorizes complaints as sustained, not-sustained, or unfounded.
Unfounded: Complaints are categorized as unfounded if there is no reasonable evidence the complaint occurred or the local contact was not called to address a complaint.

Not-Sustained: Not-sustained complaints are complaints documented with reasonable evidence to show the complaint's validity and the local contact was called and made a reasonable attempt to resolve the issue.

Sustained: Sustained complaints are complaints that are documented with reasonable evidence to show the complaint's validity and the local contact was called but there was no answer or the local contact did not take steps to resolve the issue.

Complaint documentation is attached to this staff report.

Date	Type of Complaint	Summary	Conclusion
$08 / 28 / 2020$	Parking	Guest vehicles parked in the public right of way.	Not-Sustained
$08 / 18 / 2021$	Parking	Guest vehicle parked in the public right of way.	Not-Sustained
$01 / 29 / 2022$	Parking	Four vehicles at the VRD, two parked in the public right of way.	Sustained due to no follow-up by the property manager.
$02 / 20 / 2023$	Guest vehicle parked in the public right of way.	Sustained due to no follow-up by the property manager.	
$02 / 24 / 2023$	Parking	Guest vehicle parked in the public right of way	Sustained. Property manager stated they had no record of the complaint however, the reporting person provided proof of the call.
$03 / 17 / 2023$	Parking	Guest vehicle parked in the public right of way.	Not-sustained. The property was being used by the owner.
$06 / 22 / 2023$	Parking	Guest vehicle parked across the street in the public right of way.	Sustained. No response to the complaint from the property manager.
$06 / 28 / 2023$	Vehicle from VRD moved to parking in the public right of way on 12	Sustained. No response from the property	
owner.			

Finding: From the numerous complaints dating back to 2020 as well as the public reviews by guests at this property, the property owner and the property manager have not taken sufficient steps to resolve this ongoing issue. The reporting person for these complaints has provided sufficient documentation in following the complaint reporting procedures by calling the Local Contact and advising the property management company of the complaint. The numerous, repeated, complaints are in violation of multiple provisions of Section 6.137 of the Seaside Zoning Ordinance.

2019 Notice of Decision Conditions of Approval:

1. Compliance Inspection: The proposed vacation rental dwelling (VRD) must pass a compliance inspection conducted by the Community Development Department prior to any transient rental. This inspection will verify compliance with all VRD standards and conditions of approval and the applicant is hereby advised that failure to meet certain standards can result in a reduction in the maximum occupancy. The final occupancy will be noted in land use file (19-032VRD) and reflected on the City of Seaside Business License. The license is not valid until the appropriate occupancy has been established by the approval of a final compliance inspection by the Community Development Department.

Please be advised the VRD has already undergone a preliminary compliance inspection and all corrections must be completed and verified prior to any transient rental unless an alternative time period for completion was identified for specific items.

Finding: The applicant's property was inspected and corrections were completed prior to the 2019 final approval. This criterion is met.
2. Parking spaces: Two (2) off-street parking spaces ($\mathbf{9}^{\prime} \mathbf{X 1 8}$ ' per space) are required on site. These spaces shall be permanently maintained and available on-site for use by the vacation rental occupants. Vacation Rental Dwelling (VRD) tenants are required to park in the spaces provided on site for the VRD. No onstreet parking associated with this VRD is allowed at this location. Vehicles parked at VRDs may not project over the sidewalk and block pedestrian traffic. A parking map shall be posted inside the dwelling for the VRD tenants. The map must clearly indicate: ON-STREET PARKING CANNOT BE USED BY RENTERS. PLEASE USE THE SPACES PROVIDED ON SITE.
图 If the graveled street accessing the property ($14^{\text {th }}$ Avenue) is paved in the future, the required off street parking spaces must be paved (asphalt, concrete or other comparable surface authorized by the Planning Director) in accordance with City requirements while maintaining compliance with the open yard area requirements in Condition 5. Failure to complete the paving will require suspension of the rental until such time the improvements are completed.

Finding: The applicant's parking spaces are not clearly delineated from the landscaping. The applicant's guests have routinely utilized street parking instead of parking in the required off-street parking spaces. The applicant is required to delineate the parking area from the required landscaping and ensure no more than two vehicles are brought to the VRD by renters. This criterion is not met.
3. Maximum number of occupants: Six (6) persons over the age of three, no more than ten regardless of age. The maximum occupancy, along with good neighbor rules, shall remain posted inside the front door in a conspicuous place. It is the owner's responsibility to ensure the renters are aware of these limitations. If the number of occupants is less than the original number requested, it may have been reduced for valid code reasons.

Finding: The owner is responsible for ensuring their guests know the occupancy limits of their VRD approval. Occupancy is calculated at three persons per bedroom. The original application lists this as a three-bedroom house. The applicant is required to provide one parking space per bedroom. The applicant does not have room for three off-street parking spaces. The applicant will need to lock off one of the three bedrooms from guest's use and no longer advertise this property as a 3-bedroom VRD. This criterion is not met.
4. Applicability of Restrictions: Properties licensed for VRD use will be expected to adhere to the VRD standards and rules throughout the entire year even when they are not being rented for profit. This will not apply to the dwellings when members of the owner's family are present.

Finding: The majority of the complaints filed are due to renters and not the applicant's personal use of the property. This criterion is met.
5. Open Yard Areas: Front, side, and rear yards must maintain a residential appearance by limiting off street parking within yard areas.

囚 If the applicant's plan to prevent cars from parking in the eastern portion of the graveled front yard area is unsuccessful, additional planters or other landscape treatments will be required by the Planning Director.

Finding: The applicant's off-street parking area is not clearly delineated from their required landscaping. The applicant will need to delineate their two off-street parking spaces from their required landscaping. Based on the applicant's site plan, the off-street parking area cannot exceed 465.95 sq. ft. in order to meet the 50% front yard area landscaping requirement. This criterion is not met due to parking taking up more than 50% of the required front yard area.
6. Local Contact: Vacasa, Rita SanRoy, 1803 S Roosevelt, Seaside, OR; will be the local contact for the VRD and she can be reached at (503) 345-9399.

The contact person must be available 24 hours a day to address compliance issues while the property is rented. Upon any change in the local contact, the owner must provide formal notice of the updated contact information to the City and all of the neighboring property owners within 100^{\prime}. Managers are required to notify the City any time they stop representing a VRD.

Local contact information is available at the Community Development Department (503) 738-7100, City Hall (503) 738-5511, or after business hours at the Seaside Police Department (503) 738-6311.

区 The local contact must sign a Local Contact Acknowledgement Form that indicates they are aware of the Commission's expectations concerning response to complaints by neighboring residents and maintain a complaint response log that would be made available to the city upon request. The signed form must be returned to the Community Development Department so it can be included in the land use file. An updated form must be submitted by the owner any time a new contact person is established.

Finding: The Seaside Zoning ordinance defines "person" as "Any natural person, firm, partnership, association, social or fraternal organization, corporation, estate, trust, receiver, syndicate, branch of government, or any other group or combination acting as a unit." The applicant lists Vacasa as the local contact. Vacasa has a local office, and employees who reside in Clatsop County. The property management company has not been available 24 hours a day to address compliance issues as documented in several complaint reports. This VRD is not in compliance with this condition. This criterion is not met due to issues with the local contact not responding to complaints.
7. Compatibility: A VRD will be compatible with the surrounding land uses and shall not contribute to excessive parking congestion on site or along adjacent streets.

Finding: This VRD has had multiple complaints making it no longer compatible with the surrounding land uses. The VRD complaints document excessive parking congestion on-site and along the adjacent street. This criterion is not met.
8. Exterior Outdoor Lighting: All exterior lighting must conform to the newly adopted Outdoor Lighting Ordinance even if any pre-existing outdoor lighting would normally be exempt under the provisions of the ordinance. This will basically require shielding of any exterior lighting fixtures such that glare will not be visible from the surrounding property for any lighting element that exceeds 450 lumens, the equivalent of a 40 watt incandescent
bulb. This does not apply to any existing outdoor security lighting that is timed for short durations and activated by motion detectors.

Finding: Staff has not received complaints regarding excessive exterior lighting. This criterion is met.
9. Ordinance Compliance \& Solid Waste Pick-up: All vacation rentals must comply with City ordinances regarding noise, smoke, dust, litter, odor, and solid waste collection. Weekly solid waste pick-up is required during all months.

Finding: Staff has not received complaints regarding solid waste pick-up. This criterion is met.
10. Required Maintenance: It is the property owner's responsibility to assure that the vacation rental dwelling remains in substantial compliance with Oregon State requirements for the following: Health, Safety, Building, and Fire Codes, Traveler's Accommodation Statutes, and with the Uniform Housing Code. Owners are hereby advised that Carbon Monoxide detectors must be installed and maintained in all newly established transient rental occupancies.

Finding: Staff has not received complaints regarding the maintenance of this VRD. This criterion is met.
11. Permit Non-transferability: Vacation rental dwelling permits are personal in nature and accordingly are not transferable. Upon transfer of the property, the new owner, if he or she so desires, may apply for a new permit in accordance with City Ordinance.

Finding: This VRD remains under the ownership of the original applicant. This criterion is met.
12. Business License, Room Tax Requirements, \& Revocation for Non Payment: A City Business License is required and all transient room tax provisions apply to VRD's. The business license must be obtained prior to any rental of the property. Renewals must be made in January of the permit year. If the business license fee or the transient room tax payments are thirty (30) days past due, the VRD Permit will be revoked unless a written extension is granted by the Finance Director.

Although Airbnb pays the transient room tax directly to the city, owners/applicants that utilize their service are still required to report the Airbnb revenue on their quarterly returns.

Finding: The applicant has remitted all applicable taxes and is current on their business license status. This criterion is met.
13. Conflicts \& Potential Denial for Non Compliance: Upon receipt of two written complaints from two or more occupants of different residences who claim to be adversely affected by the use of the property as a vacation rental dwelling, or by notice from the City Code Compliance Officer that requirements or conditions of approval are not being met, the Planning Department will work with the parties involved to settle any conflicts. If the problems are not resolved, the permit will be reviewed by the Planning Commission as provided in Zoning Ordinance Section 6.137, Subsection 5 at the applicant's expense. Failure on the applicant's part to meet the standards or conditions will result in modification or denial of the permit.

Finding: Staff has received eight (8) documented complaints regarding the operation of this VRD. The documented complaints have all come from one neighboring property owner. The reporting person has clearly documented and shown repeated violations of the Zoning Ordinance and the VRDs conditions of approval. The VRD Compliance Official has attempted to work with the parties involved to resolve the repeated complaints. The applicant and their property manager have not taken sufficient steps to resolve the repeated parking issues at this VRD. The compliance hearing has been scheduled due to documentation by the City's VRD Compliance Official that the VRD is repeatedly in violation of their conditions of use and that attempts to work with the parties involved to resolve the complaints have not been successful. This criterion is met.
14. Complaints: Applicants are hereby advised the City Code Compliance Officer routinely follows-up on individual complaints if there is a valid code issue that needs to be addressed by the owner and/or manager of a VRD.

Staff does not wait until the occupants of two different residences submit written complaints before they take action to achieve compliance. The VRD complaint procedures are outlined in an attachment to the notice of decision and the forms can also be accessed on the City of Seaside's web site http://www.cityofseaside.us/sites/default/files/docs/VRD-COMPLAINTFORM.pdf This should be used to report alleged violations that are not being addressed by the local contact or property manager.

Finding: Staff has documented eight (8) complaints regarding the operation of this VRD. The VRD Compliance Official has documented that the reporting person has followed the procedures to file a complaint, including notifying the local contact first, as well as providing sufficient evidence of the validity of each complaint. This criterion is met.
15. Time Period for Approval, Required Re-inspection: This VRD approval shall be limited to 5 calendar years unless the dwelling is re-inspected (subject to the applicable fee) for compliance with the VRD policies and ordinances applicable at the time of the re-inspection. Re-inspection notices will be provided to the owners at the time business licenses are issued for the $5^{\text {th }}$ calendar year. If the re-inspection is not completed during the $5^{\text {th }}$ year, the permit will expire and a new VRD application must be approved prior to obtaining a new business license for the $6^{\text {th }}$ calendar year. Compliance with the re-inspection requirements will reauthorize the VRD for an additional 5 calendar years.

Finding: The applicant received their VRD approval in 2019. Their 5-year inspection is not due until 2024. This criterion is met.
16. Tsunami Information \& Weather Radio: The owner shall post or otherwise provide a tsunami evacuation map in a conspicuous location within the VRD. In addition, a NOAA weather radio, with automatic alert capabilities, must be permanently affixed in a central part of the VRD along with an informational sheet that summarizes the warning capabilities of the radio in the event of a distant tsunami.

Finding: This is a requirement of the initial VRD inspection and subsequent 5-year inspections. This criterion is met.
17. Grace Period: If a currently licensed VRD sells to another party, staff is allowed to grant a temporary grace period of not more than 60 days in which current bookings can be cleared without being recognized as a violation. The manager or owner must provide staff with a list of the bookings during the grace period and no additional bookings can be taken during that time.

Finding: This VRD is under the same ownership as the original applicant and is not within the 60-day grace period. This criterion is met.
18. Pet Friendly Rental: If the rental allows pets and they generate complaints related to running at large, trespass onto neighboring property, or causing a disturbance due to excessive barking; additional restrictions or containment measures will be required by the Planning Director. The additional restriction can include prohibiting pets at this VRD.

Finding: Staff has not received complaints regarding pets at this VRD. This criterion is met.
19. Outdoor Fire Pit Use Hours: Use of the outdoor fire pit will be restricted between the hours of 10:00 p.m. \& 7:00 a.m. If these hours prove to be insufficient to protect the neighboring property owner's from unwanted noise, they will be further restricted by staff. The additional restriction can include prohibiting use of the outdoor fire pit entirely and securing it from use by VRD tenants.

Finding: Staff has not received complaints regarding the use of an outdoor fire pit. This criterion is met.
20. Outdoor Fire Pit Smoke: Use of the outdoor fire pit will be further restricted by staff if smoke from the fire pit leads to complaints from the neighboring property owners. The additional restriction can include prohibiting the use or restricting it to a gas or propane fire pit.

Finding: Staff has not received complaints regarding the use of an outdoor fire pit. This criterion is met.

L. Recommendation and Alternatives:

Staff recommends the Planning Commission conduct a public hearing on the application, take public comments, and review and discuss the conditions under which this VRD is authorized to operate. Staff recommends the modification to the original approval, as well as adopting additional conditions to address the failure of this VRD to meet all of the criteria and provisions of the conditions of use and the Seaside Zoning Ordinance.

Recommended Additional Conditions and Modifications to Existing Conditions:

Modification to Condition 2:

Parking spaces: Two (2) off-street parking spaces (9' X 18' per space) are required on site. These spaces shall be permanently maintained and available on-site for use by the vacation rental occupants. Vacation Rental Dwelling (VRD) tenants are required to park in the spaces provided on site for the VRD. No on-street parking associated with this VRD is allowed at this location. Vehicles parked at VRDs may not project over the sidewalk and block pedestrian traffic. A parking map shall be posted inside the dwelling for the VRD tenants. The map must clearly indicate: ON-STREET PARKING CANNOT BE USED BY RENTERS. PLEASE USE THE SPACES PROVIDED ON SITE.
® If the graveled street accessing the property ($14^{\text {th }}$ Avenue) is paved in the future, the required off street parking spaces must be paved (asphalt, concrete or other comparable surface authorized by the Planning Director) in accordance with City requirements while maintaining compliance with the open yard area requirements in Condition 5. Failure to complete the paving will require suspension of the rental until such time the improvements are completed.

ख This VRD only has space for only two (2) off-street parking spaces. A maximum of two vehicles per booking will be allowed at this property. Advertisements for renting this property need to specify only two vehicles will be allowed per booking. It is the responsibility of the property owner to ensure the parking requirements are adhered to.

Modification to Condition 3:

Maximum number of occupants: $\underline{\text { Six (6) persons over the age of three, no more than ten regardless of age. }}$ The maximum occupancy, along with good neighbor rules, shall remain posted inside the front door in a conspicuous place. It is the owner's responsibility to ensure the renters are aware of these limitations. If the number of occupants is less than the original number requested, it may have been reduced for valid code reasons.

囚 Occupancy is calculated as three (3) persons over the age of three per bedroom. VRDs are required to have one off-street parking space per bedroom. This VRD only has two (2) off-street parking spaces. This VRD is advertised as a three-bedroom dwelling however, the occupancy is calculated as a two-bedroom dwelling due to off-street parking space limitations. The VRD owner is required to lock off one of the three bedrooms so that only two bedrooms are available for guests to use. This VRD cannot be advertised as a three-bedroom dwelling as it does not have sufficient off-street parking for three bedrooms.

Modification to Condition 5:

Open Yard Areas: Front, side, and rear yards must maintain a residential appearance by limiting off street parking within yard areas.

囚 If the applicant's plan to prevent cars from parking in the eastern portion of the graveled front yard area is unsuccessful, additional planters or other landscape treatments will be required by the Planning Director.

ख The applicant's current parking configuration is in violation of the City of Seaside's Zoning Ordinance. The applicant is required to delineate the parking area from the required landscaping utilizing permanent landscape features. The applicant's two (2) parking spaces cannot take up more than 50% of the required front yard area.

Additional Conditions

Condition 21: Establish a compliance probationary period of one-hundred-eighty days (180) days starting August 2, 2023, and ending on January 29, 2024. During the probationary period, the VRD owner is expected to ensure the VRD is in compliance with all of the conditions listed as well as all City ordinances.

Documented instances of VRD renters parking on the street instead of in the required off-street parking area may be cause for revocation of the VRD conditional use approval. The VRD's local contact is expected to respond to and resolve complaints in a timely manner. The VRD owner is expected to maintain a complaint log documenting any complaint received and the actions taken by their local contact to resolve the complaint.

Condition 22: The VRD owner is required to address the existing conditions that violate the Zoning Ordinance and violations of their conditions of use by September 1, 2023. This includes permanent landscaping so that no more than 50% of the required yard area is taken up parking, locking off one of the three bedrooms from guest's use, ensuring all advertising provides language that there is a maximum limit of two vehicles per reservation, and only advertise this property as a two-bedroom rental.

Alternative 1:

The Planning Commission may choose to continue this review to the regularly scheduled September 5, 2023, Planning Commission meeting to allow the Commission time to review submitted evidence or to allow the applicant, other affected parties, and the public, additional time to review or submit further evidence, rebuttals, or justifications.

Alternative 2:

The Planning Commission may choose to hold the public hearing and review additional submitted comments or evidence. If the Planning Commission finds that new evidence and testimony are contrary to the complaint reports received and other evidence presented, the Planning Commission can issue findings and allow the original 2019 VRD approval and conditions to continue without modification.

Alternative 3:

The Planning Commission may choose to hold the public hearing and review additional submitted comments or evidence. If new evidence justifies revoking the applicant's VRD approval, the Planning Commission can adopt the additional evidence and findings and move to revoke.

The information in this report and the recommendations of staff are not binding on the Planning Commission and may be altered or amended during the public hearing.

CITY OF SEASIDE VACATION RENTAL DWELLING (VRD) APPLICATION

The City of Seaside requires approval for short term (less than 30 day) rental of certain types of residential property. These uses are referred to as vacation rental dwellings (VRDs) and they must be approved in accordance with the conditional use provision in Chapter 6.137 of the Seaside Zoning Ordinance (see attached). Although most requests can be reviewed by the Planning Director; in some cases, the requests require a public hearing before the City Planning Commission. In both cases, VRD applicants must provide the following information.
In addressing the following questions, additional information and supporting evidence can be referenced and attached to the submittal.

SUBMITTAL INFORMATION

1. Applicant's Name

\qquad
2. Mailing Address: \qquad
3. Telephone \#: Home 5032348934 , Work 5038676993 , Fax \qquad , E-Mail \qquad
4. If the applicant is not the current owner, the applicant must also submit a signed statement from the owner that authorizes the VRD application.
5. VRD Street Address: \qquad
6. What is the total number of off-street parking spaces ($9^{\prime} \times 18^{\prime}$) that will be available for VRD occupant use? \qquad The VRD ordinance states: One $9^{\prime} \times 18^{\prime}$ off-street space will be provided for each bedroom in the unit, but in no event shall fewer than two spaces be provided.
7. How many bedrooms are in the dwelling? \qquad . Is the applicant requesting that all the bedrooms be used to calculate the maximum occupancy, and if not; how many are being proposed? \qquad Please multiply the last number by three (3) to indicate the requested maximum occupancy for the VRD \qquad . The VRD ordinance states: The maximum number of occupants cannot exceed three persons (over the age of three) per bedroom; however, regardless of the number of bedrooms, no more than 10 can be allowed unless the building is protected by an approved sprinkler system. The maximum occupancy, along with good neighbor rules, shall remain posted inside the front door in a conspicuous place. It is the owner's responsibility to ensure the renters are aware of these limitations. The number of overnight renters or the maximum number of occupants may be reduced by the Code Enforcement Officer or Fire Marshal at the time of inspection for valid code reasons.

1|Page
8. All off street parking spaces must be clearly indicated on the applicant's. site plan. Will the existing parking spaces or any planned expansion of parking take up more than 50% of the property's yard areas? no . The VRD ordinance states: Front, side, and rear yards must maintain a residential appearance by limiting off street parking within yard areas. At least 50% of each yard area which is not occupied by buildings must be landscaped in some fashion so that parking will not dominate the yard.
9. Who will be acting as the local responsible party for the VRD owner?

Name: \qquad Phone\# 5033459399. Address: \qquad Seaside OR 97138. The VRD ordinance states: A local responsible party that permanently resides within the county must be identified by the owner. The responsible party will serve as an initial contact person if there are questions regarding the operation of the VRD. The owner shall provide the telephone number of the local contact person to the City, and to the immediate neighbors within the notification area (within 100' of the subject property).
10. What is the zone designation of subject property? \qquad . The VRD ordinance states: Within the medium density residential ($R-2$) zones and high density residential $(R-3)$ zones, if more than 20% of the dwelling units within 100^{\prime} of the subject property are currently licensed for VRD use, a public hearing and review by the Planning Commission is required.
11. Provide a site plan, drawn to scale, which indicates the following: the actual shape and dimensions of the lot, the sizes and locations of buildings and off street parking spaces (existing \& proposed). In addition to the site plan, a floor plan(s) must be included which clearly indicates the intended use of all interior areas (e.g. bedrooms, kitchen, living room, storage etc.).
12. The following is a list of standard conditions that apply to VRDs:

- Vacation rentals must comply with City ordinances regarding noise, smoke, dust, litter, odor, and solid waste collection Weekly solid waste pick-up is required during all months.
- Prior to issuance of a vacation rental dwelling permit, the building in question must be inspected and be in substantial compliance with the Uniform Housing Code.
- It is the property owner's responsibility to assure that the vacation rental dwelling remains in substantial compliance with Oregon State requirements for the following: Health, Safety, Building, and Fire Codes; and Traveler's Accommodation Statutes, and with the Uniform Housing Code.
- Vacation rental dwelling permits are personal in nature and accordingly are not transferable. Upon transfer of the property, the new owner, if he
or she desires, may apply for a new'permit in accordance with the VRD ordinance.
- A City Business License is required and all transient room tax provisions apply to VRD's. The business license must be obtained prior to any rental of the property. Renewals must be made in January of the permit year. If the business license fee or the transient room tax payments are thirty (30) days past due, the VRD Permit will be revoked unless a written extension is granted by the Finance Director.
- Upon receipt of two written complaints from two or more occupants of different residences who claim to be adversely affected by the use of the property as a vacation rental dwelling, or by notice from the City Code Compliance Officer that requirements or conditions of approval are not being met, the Planning Department will work with the parties involved to settle any conflicts. If the problems are not resolved, the permit will be reviewed by the Planning Commission as provided in the VRD ordinance. Failure on the applicant's part to meet the standards or conditions will result in denial of the application. This would be in addition to any violation procedures specified in Article 12 of the Seaside Zoning Ordinance.
Has the owner or the duly authorized applicant read all the standard conditions and answered all of the questions honestly based on their understanding of the VRD request? \qquad .
By signing this application, the applicant is also acknowledging that if the request requires review by the Planning Commission (Ordinance Provision 6.137E), the Applicant or a duly Authorized representative must attend the Public Hearing.
Applicant's Signature:
 Date:
 For Office Use Only
At the time of submittal, the applicant must pay the annual business license fee based on the proposed occupancy of the VRD: 1-5 occupants \$75.00, 6-10 occupants $\$ 100.00,11+$ occupants 150.00 . This fee must be accompanied by a one time filing fee of $\$ 20.00$.
In addition to the business license fee, a $\$ 430.00$ planning review fee must be submitted with this application. If the surrounding density of VRDs (see question 10) requires a Planning Commission review, an additional fee of $\$ 240.00$ must be paid before staff will schedule the public hearing to review the application.
If the VRD application is not approved, only the business license fee will be refunded.
Submittal Date: \qquad Amount Paid: \qquad

Please Print or Type

PROPOSED USE OF PROPERTY AND PURPOSE OF APPLICATION(S):
\qquad
(PLEASE INCLUDE THE APPROPRIATE PLOT PLAN.
IF ADDITIONAL SPACE IS NEEDED OR SUPPLEMENTAL INFORMATION IS REQUIRED PLEASE ATTACH)

CHECK TYPE OF PERMIT REQUESTED:

\square CONDITIONAL USE	\square NON CONFORMING	\square SUBDIVISION	\square ZONING CODE AMENDMENT
\square LANDSCAPE/ACGESS REVIEW	\square PLANNED DEVELOPMENT	\square TEMPORARYUSE	\square ZONING MAP AMENDMENT
\square MAJOR PARTITION	\square PROPERTY LINE	\square VACATION RENTAL	\square APPEAL
\square MINOR PARTIIION	\square ADJUSTMENT	\square SETBACK REDUCTION	\square VARIANCE
\square			

PLANNING DEPARTMENT USE:	
DATEACCEPTED AS COMPLETE	BY
CASE NUMBER(S)	
HEARING DATE	P.C. ACTION

	OFFICE USE:	
FEE		RECEIPT
DATE FILED		BY
	$:$	

U:12004 \& After-My DocumentsIPlanningIFORMSWApplication Cover Sheet.doc

Seaside Planning Director

Memo

To: Commenting Property Owners
From:Planning Director, Kevin S. Cupples

Date: July 31, 2019
Re: Objection to Vacation Rental Request 19-032VRD, $46114^{\text {th }}$ Avenue

Abstract

A number of surrounding property owners submitted written commented on the above referenced request and I wanted to thank you for your participation in the review process. Please be advised each of the written comments were taken into consideration prior to making the final decision on July 31, 2019. Your comments have been incorporated into the land use file associated with the request where they can be referred to if there are any future land use issues that require follow-up by the City. I thought it was important to let you know your comments were also reviewed by the applicant so they were fully aware of your concerns. In light of that information, the applicant submitted some additional comments (see the attached email) concerning their purpose in purchasing the home and seeking approval to do some short term rental of it.

I know that conditional approval the applicant's Vacation Rental Dwelling (VRD) request was not the decision you wanted, the request was approved subject to an extensive list of conditions that are intended to reduce potential impacts from the dwelling's use as a VRD. In this case, one of the conditions has reduced the occupancy that was originally requested. Another condition will require the local contact to sign a Local Contact Acknowledgment Form that was recently supported by the Planning Commission during the review of a similar VRD request.

A number of the written comments called for a moratorium on any new VRDs. Staff did confer with the City of Seaside's legal counsel and he advised staff that a moratorium on new VRDs is not justifiable. They are a conditionally permitted use recognized in our adopted ordinance and comprehensive plan. They must be reviewed in the manner prescribed by those adopted regulations and that is the intent of the final decision.
I encourage you to call the local contact so they can follow-up on any future issues. If the issues persist and they are not being addressed by the local contact, please let us know so we can seek the implementation of addition actions to rectify the problem.
Please be advised the Planning Commission and City Council are currently looking at changing the governance of VRDs in Seaside. Although there isn't a saturation percentage currently identified, that is being taken into consideration as they look at changing the regulations, policies, and procedures related to VRDs. They are also considering how a designated compliance officer could be incorporated into the system.
If you have further questions, please contact the Department at 503-738-7100.

Seaside, OR 97138

Date \qquad

Kevin Tuples

Seaside Planning Department

989 Broadway

Seaside, OR 97138

Re: proposed Vacation Rental at 461 14th

Dear Kevin Cupples,

I am writing about the vacation rental application in my neighborhood that will become a nuisance. My home is located near the vacation rental and I have experienced a high level of issues with the vacation rentals in my neighborhood, consisting of loud partying, high traffic and illegal activity. This has been a continual problem over many years. Quiet and peaceful enjoyment of our home is no longer possible.

Residents are put in a position of policing the vacation rentals which creates adversarial relationships with the vacation rental owners (business owners). I would recommend a moratorium on vacation rental until the City of Seaside can assess the impact to tax paying full time residents in our city.

Sincerely

PIS. Please monitor the
Vacation Rentals that have
had numerous complaints
11
 "Nusisance" activity.

DATE: May 30, 2019
TO: Kevin Cupples, Seaside Planning Director
FROM: Tedd \& Nancy Chilless, Owners of 451 14th Ave., Seaside, OR
RE: VRD Application for 461 14th Ave., Seaside, OR

Dear Mr. Cupples:
Please be aware that there is already little available street parking for the houses at the end of 14th Avenue toward the river. Mr. Mittelstaedt's request for 3 bedrooms and 9 people over 3 has the dire potential of overloading our street with parked cars.

It is our strong and measured recommendation that a VRD permit NOT be granted so that the residential nature of 14th Avenue be maintained. 441 14th Avenue on our other side already has VRD status and it lacks off street parking.

At the very least, if a VRD permit is to be granted, it is imperative that it be restricted to 2 cars to be parked in the available parking spaces off street and that the number of people be restricted to a maximum of two people per bedroom for a maximum of 6 over the age of three.

Please feel free to contact us with any questions.
Respectfully submitted,

Tedd Chilless
Cell: 503-970-4757

Nancy Chilless
Cell: 503-816-0394

Seaside, OR 97138

Date $6-3 \cdot 19$

Kevin Cupples
 Seaside Planning Department

989 Broadway

Seaside, OR 97138

Re: proposed Vacation Rental at 461 14th

Dear Kevin Cupples,

I am writing about the vacation rental application in my neighborhood that will become a nuisance. My home is located near the vacation rental and I have experienced a high level of issues with the vacation rentals in my neighborhood, consisting of loud partying, high traffic and illegal activity. This has been a continual problem over many years. Quiet and peaceful enjoyment of our home is no longer possible.

Residents are put in a position of policing the vacation rentals which creates adversarial relationships with the vacation rental owners (business owners). I would recommend a moratorium on vacation rental until the City of Seaside can assess the impact to tax paying full time residents in our city.

Sincerely

Seaside, OR 97138
Date June 1, 2019

Kevin Tuples

Seaside Planning Department

989 Broadway

Seaside, OR 971.38

Re: proposed Vacation Rental at 461 14th

Dear Kevin Cupples,

I am writing about the vacation rental application in my neighborhood that will become a nuisance. My home is located near the vacation rental and I have experienced a high level of issues with the vacation rentals in my neighborhood, consisting of loud partying, high traffic and illegal activity. This has been a continual problem over many years. Quiet and peaceful enjoyment of our home is no longer possible.

Residents are put in a position of policing the vacation rentals which creates adversarial relationships with the vacation rental owners (business owners). I would recommend a moratorium on vacation rental until the City of Seaside can assess the impact to tax paying full time residents in our city.

Sincerely

Seaside, OR 97138

RECEIVED

 613119

Kevin Tuples

Seaside Planning Department

989 Broadway

Seaside, OR 97138

Re: proposed Vacation Rental at 461 14th

Dear Kevin Tuples,

I am writing about the vacation rental application in my neighborhood that will become a nuisance. My home is located near the vacation rental and I have experienced a high level of issues with the vacation rentals in my neighborhood, consisting of loud partying, high traffic and illegal activity. This has been a continual problem over many years. Quiet and peaceful enjoyment of our home is no longer possible.

Residents are put in a position of policing the vacation rentals which creates adversarial relationships with the vacation rental owners (business owners). I would recommend a moratorium on vacation rental until the City of Seaside can assess the impact to tax paying full time residents in our city.

Sincerely

Kevin Tuples

Seaside Planning Department

989 Broadway

Seaside, OR 97138

Re: proposed Vacation Rental at 461 14th

Dear Kevin Tuples,

I am writing about the vacation rental application in my neighborhood that will become a nuisance. My home is located near the vacation rental and I have experienced a high level of issues with the vacation rentals in my neighborhood, consisting of loud partying, high traffic and illegal activity. This has been a continual problem over many years. Quiet and peaceful enjoyment of our home is no longer possible.

Residents are put in a position of policing the vacation rentals which creates adversarial relationships with the vacation rental owners (business owners). I would recommend a moratorium on vacation rental until the City of Seaside can assess the impact to tax paying full time residents in our city. As a Cong terns Resident (aver 20 yes) Sincerely
 ALL THE REST ARE VRU'S. sets' hand to have a neighashocd if yer don's Nave amy Neighbors.

Seaside, OR 97138

Kevin Tuples
Seaside Planning Department

989 Broadway

Seaside, OR 97138

Re: proposed Vacation Rental at 461 14th

Dear Kevin Cupples,
I am writing about the vacation rental application in my neighborhood that will become a nuisance. My home is located near the vacation rental and I have experienced a high level of issues with the vacation rentals in my neighborhood, consisting of loud partying, high traffic and illegal activity. This has been a continual problem over many years. Quiet and peaceful enjoyment of our home is no longer possible.

Residents are put in a position of policing the vacation rentals which creates adversarial relationships with the vacation rental owners (business owners). I would recommend a moratorium on vacation rental until the City of Seaside can assess the impact to tax paying full time residents in our city.

RECEIVED

DATE: May 30, 2019
TO: Kevin Cupples, Seaside Planning Director
FROM: Tedd \& Nancy Chilless, Owners of 451 14th Ave., Seaside, OR
RE: \quad VRD Application for 461 14th Ave., Seaside, OR

Dear Mr. Cupples:
Please be aware that there is already little available street parking for the houses at the end of 14th Avenue toward the river. Mr. Mittelstaedt's request for 3 bedrooms and 9 people over 3 has the dire potential of overloading our street with parked cars.

It is our strong and measured recommendation that a VRD permit NOT be granted so that the residential nature of 14th Avenue be maintained. 441 14th Avenue on our other side already has VRD status and it lacks off street parking.

At the very least, if a VRD permit is to be granted, it is imperative that it be restricted to 2 cars to be parked in the available parking spaces off street and that the number of people be restricted to a maximum of two people per bedroom for a maximum of 6 over the age of three.

Please feel free to contact us with any questions.
Respectfully submitted,

Tedd Chilless
Cell: 503-970-4757

Nancy Chilless
Cell: 503-816-0394

Seaside, OR 97138

Date \qquad $5-31-19$

Kevin Tuples
Seaside Planning Department

989 Broadway

Seaside, OR 97138

Re: proposed Vacation Rental at 461 14th

Dear Kevin Cupples,
I am writing about the vacation rental application in my neighborhood that will become a nuisance. My home is located near the vacation rental and I have experienced a high level of issues with the vacation rentals in my neighborhood, consisting of loud partying, high traffic and illegal activity. This has been a continual problem over many years. Quiet and peaceful enjoyment of our home is no longer possible.

Residents are put in a position of policing the vacation rentals which creates adversarial relationships with the vacation rental owners (business owners). I would recommend a moratorium on vacation rental until the City of Seaside can assess the impact to tax paying full time residents in our city.

Sincerely

- We already hand a vacation rental at the end of street. They speed up sown the rid
 any move vacation rentals on our street.

From:
Sent:
To:
Subject:
Ted Mittelstaedt tedm@mittelstaedt.us
Tuesday, June 4, 2019 11:09 PM
Debbie Kenyon
Re: ONE MORE

Hi Debbie,

I haven't talked to Joyce about the VRD but I would like to address the issues that she has raised.

For starters we did not purchase the house as a moneymaking endeavor. My wife and I have lived in Portland since the 1970s we both grew up there. We both have spent summers growing up in Seaside and have wanted to buy a home at the coast for many years now. My wife Jean's father also happens to own a second home in Cannon Beach, we are no strangers to the Northern Oregon Coast.

I personally own Portlandia Cloud Services a business which many years ago purchased Seasurf Internet an ISP which was started in Seaside and still to this day has email and web customers. The URL is http://www.seasurf.net I have also done business for years with customers in Tillamook.

I do understand Joyces concern with losing permanent neighbors we have the same gentrification process happening in Portland. In Portland my wife and I bought in 25 years ago when the market was low, it is high now. Young families cannot afford to buy in anymore. Including our own children one of who is a young adult and the other right behind him. When they buy homes they will be far away from ours, far out of the core of the city.

Both my wife and I regard our property in Seaside as a second HOME! Not a business. There are some vacation rentals in Seaside that clearly businesses. For example there's one a block away on Franklin that has SIX separate bedrooms they rent out - all with private baths and fireplaces (according to the catalog at least, I've never been in it) Yet it's listed as a "home"

Our interest in renting is to make enough money to cover the ongoing costs of the house, the utilities and maintenance. We have no mortgage on the home we are trying to fund, and no desire to have high traffic, partying, and illegal activity. That is the main reason we decided not to buy a hot tub for the house, and why we are willing to live with a restriction of 6 people. The house is a place for us to "recharge our batteries" and for quiet contemplation and we intend to be the primary users of it, with the vacation renters a distant second. And one of these days when we are finally free of the rat race in Portland, it will be our primary home.

Edward Mittelstaedt

On 6/4/2019 2:05 PM, Debbie Kenyon wrote:
$>$
> Hope you have an Amazing Day!
$>$
> Debbie Kenyon
> Community Development
> Administrative Assistant
> 1387 Avenue U - Situs Address
> 989 Broadway - Mailing Address
> Seaside, OR 97138

Debbie Kenyon

From:
Sent:
To:
Subject:

Ted Mittelstaedt tedm@mittelstaedt.us
Tuesday, June 4, 2019 9:17 PM
Debbie Kenyon
Re: letters from neighbors regarding your VRD

Hi Debbie,

We can live with a restriction of 6 max and 2 cars. I appreciate the time that Tedd and Nancy took to write the letter and can understand that Tedd was probably uncomfortable with telling me that himself when I talked to him about it on the 24th of May about the VRD application.

Edward Mittelstaedt

On 6/4/2019 1:49 PM, Debbie Kenyon wrote:
$>$
$>$ Hope you have an Amazing Day!
$>$
> Debbie Kenyon
> Community Development
> Administrative Assistant
> 1387 Avenue U - Situs Address
> 989 Broadway - Mailing Address
> Seaside, OR 97138
> 503-738-7100 Phone
> 503-738-8765 Fax
$>$
> -----Original Message-----
> From: pwscanner@cityofseaside.us [mailto:pwscanner@cityofseaside.us]
> Sent: Tuesday, June 4, 2019 2:08 PM
> To: Debbie Kenyon dkenyon@cityofseaside.us
> Subject: Message from "RNP002673BCCC6E"
>
$>$ This E-mail was sent from "RNP002673BCCC6E" (MP C5503).
$>$
> Scan Date: 06.04.2019 14:08:17 (-0700) Queries to:
> pwscanner@cityofseaside.us

Debbie Kenyon

From:
Sent:
To:
Subject:

Kevin Cupples kcupples@cityofseaside.us
Tuesday, June 4, 2019 1:28 PM
Debbie Kenyon
FW: VRD Inspection Corrections for 461 14th Ave permit \# 19-028VRD

More for this VRD request. We should email him the comments from the people that don't want his VRD approved so he knows the natives are getting restless. He may want to comment on them prior to a decision. I think today is the deadline for comments. I'm pretty sure this is the one that Frank Buck is commenting on but I've lost track since he's been commenting on others from a complaint standpoint.

Kevin S. Cupples
Seaside Planning Director
Ph: 503-738-7100
Fx: 503-738-8765
------Original Message-----
From: Ted Mittelstaedt [mailto:tedm@mittelstaedt.us]
Sent: Saturday, June 01, 2019 11:42 PM
To: kcupples@cityofseaside.us
Subject: Re: VRD Inspection Corrections for 461 14th Ave permit \# 19-028VRD
bottom step is fixed \& handrail reconfigured

Firepit rules are posted

Still more to come!

Ted

On 5/25/2019 12:12 PM, Ted Mittelstaedt wrote:
> Hi Kevin, $>$
> Here are the corrected handrails/banisters in the house. I know you
$>$ said to wait before doing them but I decided to do them anyway. I've
$>$ been looking at handrail fixups on other vacation houses and there's
$>$ some real ugly hack jobs out there people have done to meet compliance
$>$ and there was no way I was going to go that route.
$>$
$>$ I think you might be interested in my solution for the main floor
$>$ stairs that have the non-compliant built-in banisters. Those do not
$>$ match the 45 degree angle of the stairs so it took some finessing in
$>$ the positioning to make things look OK for the handrail.
$>$
$>$ Interestingly this was more involved than just moving the brackets a $>$ few inches up. Some of the brackets did not have all mounting screws $>$ installed into studs, if someone had fallen and grabbed onto a
> handrail they could have possibly torn it right out of the drywall so $>$ the brackets needed lateral moves as well which changed angles and $>$ heights. I also swapped sides on the bottom floor handrail. I had to $>$ put a lot of time into exactly positioning the anchors.
$>$
> All rails now are firmly anchored into studs with at least 40 ft $>$ pounds of torque on the screws - all done by hand since I reused the $>$ original flathead screws and brackets to maintain the look.
$>$
$>$ See the pictures here:
$>$
> http://www.portlandiacloudservices.com/inspection-correction/
$>$
$>$ Browse all handrail pictures in the above directory to see the $>$ measurements, here are the main ones:
$>$
> http://www.portlandiacloudservices.com/inspection-correction/first-flo
$>$ or-handrail.jpg
$>$
$>$
> http://www.portlandiacloudservices.com/inspection-correction/main-floo > r-handrail.jpg
$>$
$>$
> http://www.portlandiacloudservices.com/inspection-correction/third-flo
$>$ or-handrail.jpg
$>$
$>$
$>$
$>$ Still more to come!
$>$
$>$ Ted
$>$
$>$
> On 5/18/2019 2:06 PM, Ted Mittelstaedt wrote:
>> Kitchen fire extinguisher punchlist item completed - see pictures
>>
>> http://www.portlandiacloudservices.com/inspection-correction/extingui
>> sher1.jpg
>>
>>
>> http://www.portlandiacloudservices.com/inspection-correction/extingui
>> sher2.jpg
>>
>>
>> http://www.portlandiacloudservices.com/inspection-correction/fire-ext
>> inguisher-signage.jpg
>>
>>
>> Ted
>>
>>
>> Ted Mittelstaedt wrote:
>>> Upstairs bathroom window - security film installed - see attached
>>> receipts
>>>
>> Ted
>>>
>>> Ted Mittelstaedt wrote:
>>>> Hi!
>>>>
>>>> Please take a look at the pictures here - as I get more done I'll
>>>> add to these and send you an updated email:
>>>>
>>>> http://www.portlandiacloudservices.com/inspection-correction/
>>>>
>>>>
>>>> From the items on the list:
>>>>
>>>> 3×3 Landing Downstairs Door - completed (please review and let me >>>> know if it is OK - if the step is too high I can remove the 1 inch $\ggg>$ blocks to drop it an inch) All pressure treated wood and it's $\ggg>$ heavy and the galvanized brackets prevent it from being kicked >>>> around.
>>>>
>>>> firepit posting - pending (I am unable to find specific Firepit >>>> rules so I am attaching a text file I made up of rules that I >>>> cobbled together from various sources, >>>> please let me know if these are OK if so I'll get it laminated >>>> and posted)
>>>>
>>>> Compliant handrails - all handrails except outside stair are >>>> pending other approvals. (Please let me know if this permit is $\ggg>$ going to have to go out for 30 day notice)
>>>>
>>>> Fire extinguisher - incomplete - purchased and mounted pending the
>>>> door sign installation
>>>>
>>>> Outside steps - incomplete. Bottom step replaced (the riser had
$\ggg>$ rotted out) However the interior of the post that needs the >>>> handrail on top is completely rotted out all the way
$\ggg>$ to the bottom - we noticed it was loose - that is why. The rot is $\ggg>$ in the interior of the post it's rotting from interior to exterior >>>> which is why it looked OK. The risers are untreated cedar as is >>>> the post, the sawtooth base for the risers is pressure treated and >>>> it's fine. The top of the post was never properly capped which is >>>> why it rotted out.
>>>>
$\ggg>$ I confirmed the upstairs bathroom window IS NOT tempered glass.
>>>> (that window was a DIY installation in 2014 - this type of stuff is
>>>> why I don't do windows)
>>>> security film installation is pending
>>>>
>>>> required postings 7b, 7c completed - I have not received a business
>>>> license yet from the city with max occupancy
>>>>
>>>> Thanks!
>>>>
>>>> Edward (Ted) Mittelstaedt
>>>>
>>>>
>>>>
>>>>
>>>
>>

From:
Sent:
To:
Subject:

Ted Mittelstaedt tedm@mittelstaedt.us
Tuesday, June 4, 2019 9:17 PM
Debbie Kenyon
Re: letters from neighbors regarding your VRD

Hi Debbie,

We can live with a restriction of 6 max and 2 cars. I appreciate the time that Tedd and Nancy took to write the letter and can understand that Tedd was probably uncomfortable with telling me that himself when I talked to him about it on the 24th of May about the VRD application.

Edward Mittelstaedt

On 6/4/2019 1:49 PM, Debbie Kenyon wrote:
$>$
> Hope you have an Amazing Day!
$>$
> Debbie Kenyon
> Community Development
> Administrative Assistant
> 1387 Avenue U - Situs Address
> 989 Broadway - Mailing Address
> Seaside, OR 97138
> 503-738-7100 Phone
> 503-738-8765 Fax
$>$
> -----Original Message-----
> From: pwscanner@cityofseaside.us [mailto:pwscanner@cityofseaside.us]
> Sent: Tuesday, June 4, 2019 2:08 PM
> To: Debbie Kenyon dkenyon@cityofseaside.us
> Subject: Message from "RNP002673BCCC6E"
$>$
$>$ This E-mail was sent from "RNP002673BCCC6E" (MP C5503).
$>$
> Scan Date: 06.04.2019 14:08:17 (-0700) Queries to:
> pwscanner@cityofseaside.us
> 503-738-7100 Phone
$>503-738-8765$ Fax
$>$
$>$
> -----Original Message-----
> From: pwscanner@cityofseaside.us [mailto:pwscanner@cityofseaside.us]
> Sent: Tuesday, June 4, 2019 2:24 PM
> To: Debbie Kenyon dkenyon@cityofseaside.us
> Subject: Message from "RNP002673BCCC6E"
$>$
> This E-mail was sent from "RNP002673BCCC6E" (MP C5503).
$>$
> Scan Date: 06.04.2019 14:24:12 (-0700) Queries to:
> pwscanner@cityofseaside.us

Debbie Kenyon

From:	Ted Mittelstaedt tedm@mittelstaedt.us
Sent:	Tuesday, June 4, 2019 11:09 PM
To:	Debbie Kenyon
Subject:	Re: ONE MORE

Hi Debbie,

I haven't talked to Joyce about the VRD but I would like to address the issues that she has raised.

For starters we did not purchase the house as a moneymaking endeavor. My wife and I have lived in Portland since the 1970s we both grew up there. We both have spent summers growing up in Seaside and have wanted to buy a home at the coast for many years now. My wife Jean's father also happens to own a second home in Cannon Beach, we are no strangers to the Northern Oregon Coast.

I personally own Portlandia Cloud Services a business which many years ago purchased Seasurf Internet an ISP which was started in Seaside and still to this day has email and web customers. The URL is http://www.seasurf.net I have also done business for years with customers in Tillamook.

I do understand Joyces concern with losing permanent neighbors we have the same gentrification process happening in Portland. In Portland my wife and I bought in 25 years ago when the market was low, it is high now. Young families cannot afford to buy in anymore. Including our own children one of who is a young adult and the other right behind him. When they buy homes they will be far away from ours, far out of the core of the city.

Both my wife and I regard our property in Seaside as a second HOME! Not a business. There are some vacation rentals in Seaside that clearly businesses. For example there's one a block away on Franklin that has SIX separate bedrooms they rent out - all with private baths and fireplaces (according to the catalog at least, I've never been in it) Yet it's listed. as a "home"

Our interest in renting is to make enough money to cover the ongoing costs of the house, the utilities and maintenance. We have no mortgage on the home we are trying to fund, and no desire to have high traffic, partying, and illegal activity. That is the main reason we decided not to buy a hot tub for the house, and why we are willing to live with a restriction of 6 people. The house is a place for us to "recharge our batteries" and for quiet contemplation and we intend to be the primary users of it, with the vacation renters a distant second. And one of these days when we are finally free of the rat race in Portland, it will be our primary home.

Edward Mittelstaedt

Vacation Rental Dwelling Complaint

Address of Complaint: 461 14th
Today's Date: 8/31/2020
Date of Incident: 8/28/2020
Time: 8:16pm

Reporting Person's Information

Full Name: Frank Buck
Address: 430 14th
Phone Number:503-739-1420
E-mail Address: frankcorystuff@gmail.com

Type of Complaint: Parking
Description of Complaint: Vehicles parked in public right of way
Local Contact: Vacasa

Phone Number: 503-738-6680

Description of Action Taken by Local Contact: The reporting person never left a voicemail for Vacasa to respond. Vacasa was not made aware of the situation until the property owner contacted them to deal with the parking issue.
Vacasa sent me the following message regarding this complaint
"Once we were alerted to the issue we attempted contact the guests at 9:30am and left a voicemail, called again at 9:51am where we were able to get in contact and remind them of the policy and that further action would be needed if they didn't comply. Between 10am and 11am we did a couple of drivebys and only saw 2 cars. At 11:32am, a third card was parked in front of the fence again. We contacted them again and said we would ask them to leave if they couldn't comply immediately. 11:41am they apologized and took immediate action, and agreed they understood and would comply. We did not have any issues after that, that we are aware of.

I'm not trying to turn myself in here, but we noticed this happened again last night with different renters and were able to take action while they were still unloading their car. We also made sure that the visitors left and did not stay the night, or they would have been over occupancy. This home is now on our high watch list :)"

Photos:

Action Taken: I spoke to the reporting person via phone. The reporting person told me they have not had any luck getting a hold of Vacasa and told me he also never left a message for Vacasa to respond. The reporting person told me he did contact the owner of the property who then contacted Vacasa for action to be taken.

I explained to the reporting person that the property manager or local contact needs to be called first and a message needs to be left. The property manager or local contact has to be given a reasonable opportunity to respond to the complaint.

Through my discussion with the Vacasa's Shannon Wellman I found multiple phone numbers for Vacasa listed on the local contact spreadsheet. Shannon gave me the 24 -hour number that should be the first point of contact for all complaints. Shannon told me this number is monitored 24 -hours a day and any report to this number will immediately generate action to resolve the issue.

Conclusion: Vacasa responded to this complaint in a reasonable amount of time after learning about it. Vacasa made further attempts to stop the guests from continuing to park in the public right-of-way. Through driving by the property Vacasa's staff found the guests to be out of compliance a second time later on during their stay and threatened to evict them upon a third violation.

The guests checked out and Vacasa found the next guests checking in to be parking in the public right-of way. Vacasa immediately took action on the new guests prior to other complaints being reported. Vacasa's actions appear to be more than reasonable and they are taking pro-active steps to prevent further complaints. This complaint is not-sustained.

Jeff Flory

Transient Rental Compliance

Vacation Rental Dwelling Complaint

Reporting Person's Information

Full Name: Frank Buck
Address: 430 14th
Phone Number:503-739-1420
E-mail Address: corysaccounts@gmail.com

Type of Complaint: Parking

Description of Complaint: "I observed a car parked on the street at 7:25 at 7:45 I contacted Vacasa spoke to a woman named Yolanda who did not have contact information but said she would contact her supervisor and take care of the problem I re-contacted her at 9:30 preparing for the two hour mark and she claimed that I didn't call her and didn't know what I was talking about and it wasn't recorded in the systemAnd I explain the whole thing again and wrote her name down again Yolanda and she claimed she would contact her supervisor and she actually laughed at me and I explain to her that you had two hours to take care of the problem they did not take care of the problem in two hours I have two photographs to prove it I gave them the address to Times explained the situation to Timesl also contacted the owner via text and he did not respond until three hours later and he still trying to get them to take care of the problem so Vacasa is negligent"

Local Contact: Vacasa

Phone Number: Number of local contact.

Description of Action Taken by Local Contact: Vacasa sent a message to the guest 30 minutes after the initial complaint. Vacasa stated the guests did not immediately respond but they were eventually able to get in contact with them. The guests told them the vehicle belonged to the vacation home across the street who was having a party. Vacasa sent a representative to the property the next day and ensured none of their guests were parked on the street.

Photos:

Action Taken: I sent Vacasa a notice of this complaint. Vacasa responded with the appropriate action to resolve this issue. Vacasa immediately reached out to their guests and started taking action to resolve the complaint. On 08/24/21 I received information from Community Service Officer Paul Knoch that he was working on a complaint of the residents at 470 14th. Ofc. Knoch that this property has been the source of disturbances, parties, and late-night noise. The party at 470 14th that was happening at the time of the VRD complaint is likely the source of the VRD complaint.

On 08/25/21 I sent an e-mail to the reporting person stating this complaint was likely due to the party house across the street. The reporting person told me he is positive the vehicle belonged at the VRD as he saw it parked in the driveway and he observed an occupant exit the vehicle and go into the VRD.

The reporting persons neighbor Ted Childress spoke to me and told me he too observed the occupants of the vehicle go into the VRD and he told the occupants they should not park on the street.

Conclusion: Vacasa was responsive and took action when the complaint was reported. The vehicle was moved the next day and there were no further issues. It is unclear why the guests lied to Vacasa about the vehicle not being theirs. Vacasa followed up by sending staff the next day to ensure the vehicle had in fact been removed from the street. Not-sustained.

Jeff Flory
Transient Rental Compliance

Vacation Rental Dwelling Complaint

Address of Complaint: 461 14th
Today's Date: 1/31/2022
Date of Incident: 1/29/2022
Time: 12:40pm

Reporting Person's Information
Full Name: Frank Buck
Address: 430 14th
Phone Number:503-739-1420
E-mail Address: corysaccounts@gmail.com

Type of Complaint: Parking
Description of Complaint: Four vehicles parked at the VRD. Two vehicles parked in front of the house on the street.

Local Contact: Vacasa

Phone Number: Number of local contact.

Description of Action Taken by Local Contact: Vacasa called the guests and left a message with them regarding parking. No further follow-up was taken.

Photos:

Action Taken: I contacted Vacasa regarding this complaint. The Vacasa property manager told me the property manager that handled the complaint called the guests and left a message about the parking situation. The property manager said there was never any follow-up conducted after that phone call. Vacasa's property manager told me any future complaint where a guest does not answer will need follow-up in person in order to address the complaint.

Conclusion: This complaint is sustained due to no follow-up on the initial complaint by Vacasa.

Jeff Flory
Transient Rental Compliance

COMMUNITY DEVELOPMENT

NOTICE OF COMPLAINT

January 31, 2022
RE: Vacation Rental at 461 14 ${ }^{\text {th }}$ Ave
Property Manager,
Please be advised we received a complaint at your VRD over the weekend of January 29, 2022. The reporting person stated there were four vehicles parked at this VRD and two of the vehicles were parked on the street in front of the house. This VRD appears to only have the minimum requirement of two offstreet parking spaces available for renters to use.

The reporting person stated there has been parking issues at this VRD in the past. The reporting person stated they reported this issue to Vacasa and spoke to a representative named Eli. The reporting person stated the vehicles were not moved and no action was taken. The reporting person stated the vehicles remained parked on the street throughout the weekend. Please see the attached photos.

The Planning Commission expects action to be taken within two hours when a complaint is reported to a local contact of a VRD. Adequate fallow up needs to happen to ensure the complaint has been resolved. A person reporting a complaint should not have to call a second time because no follow up occurred.

Please respond with the complaint logs for this VRD for the past 6 months. Please let me know what actions Vacasa will be taking in order to try to resolve these issues and prevent them from occurring in the future.

If you have any questions, please feel free to call me at 503-738-7100 or e-mail me at jflory@cityofseaside.us.

Respectfully,

Jeff Flory
Transient Rental Compliance
City of Seaside, Oregon

Vacation Rental Dwelling Complaint

Address of Complaint: 461 14th Ave, Seaside, OR 97138
Today's Date: 2/22/2023
Date of Incident: 2/20/2023
Time: 0530

Reporting Person's Information

Full Name: Frank Buck
Address: 430 14th Ave
Phone Number:503.739.1420
E-mail Address: corysaccounts@gmail.com

Type of Complaint: Parking
Description of Complaint: Car parked on street in front of house

Local Contact: Vacasa

Phone Number: 503.738.6680

Description of Action Taken by Local Contact: "Illegal on-street parking in front of property. Called the contact number listed in the file, responder did not identify herself as a local contact and when told of the parking issue stated, "it must be from a nearby hotel."" RP noted there are no hotels in the area.

Photos:

Action Taken: Wrote to owner and Vacasa. Stated the importance of the local contact being responsive to complaints. Cited validated parking complaint from $1 / 31 / 2022$ where Vacasa Property manager stated, "any future complaint ... will need follow-up in person in order to address the complaint." There was no follow-up or resolution to the complaint. The photos illustrate the car was parked on the street throughout the day and into the evening allowing enough time for the property management company to address the RP's complaint.

Addendum: 2/23/2023 Received response from Lisa Payne at Vacasa (email dated 2/23/2023)...
From Lisa Payne: This is bizarre because we have no record of calls being made to us in recent days or we certainly would have dealt with it. Honestly, I am not really sure what to say when there is no record that they ever called us.

I called the RP for a record of the call and received his response with this proof of call.

Conclusion: This document's claim remains unresolved. Vacasa replied in an email they never logged the call, however proof was given by the complainant in the form of a screen shot of the call to the local contact number provided. Complaint sustained. One week after this incident another parking complaint was filed.

Anne McBride
Transient Rental Compliance

NOTICE OF COMPLAINT

February 22, 2023
RE: Vacation Rental at 461 14th Ave
Property Owner,
Please be advised we received a complaint at your vacation rental dwelling on February 20, 2023. The reporting person stated a VRD guest had parked in the public right of way in front of your vacation dwelling. As set forth in the Notice of Decision, guests are not allowed to park on the street at any time and must park in only the designated parking spaces you have identified in your application.

Photos submitted with complaint showing guest parking in front of home during daylight and evening hours.
The reporting person was able to reach the local contact, Vacasa, but the responder did not identify herself (the company) as the local contact. When told of the parking issue, the RP was told "it must be from a nearby hotel." No further action was taken by the management company. The photos show the car was parked on the street for many hours, so there was plenty of time to resolve the issue and have the car moved to the required parking area.

There was a validated parking complaint filed January 31, 2022. At that time the property management company stated, "any future complaint...will need follow-up in person in order to address the complaint." From the complaint it is unknown if the management company did follow-up with an in person visit.

Please respond with what actions will be taken to ensure guests follow the parking requirements for this VRD. On-street parking is strictly prohibited and additional steps may be necessary to encourage guests to use the provided off-street parking spaces. Also, if necessary, have the property management company reread their signed Local Contact Acknowledgment Form that states they are to respond to and take remedial action on any complaint at the VRD within a reasonable period of time which the Planning Commission has deemed within a period of two hours.

Please be advised further complaints regarding parking issues at this VRD could result in a compliance hearing with the Seaside Planning Commission. If you have any questions, please feel free to call me at 503-738-7100 or e-mail me at amcbride@cityofseaside.us.

Respectfully,

Anne McBride

Transient Rental Compliance
City of Seaside, Oregon

SUSTAINED

Vacation Rental Dwelling Complaint

Address of Complaint: 461 14th Ave, Seaside, OR 97138
Today's Date: 3/7/2023
Date of Incident: 2/24/2023
Time: 1705

Reporting Person's Information
Full Name: Frank Buck
Address: 430 14th Ave
Phone Number:503.739.1420
E-mail Address: corysaccounts@gmail.com

Type of Complaint: Parking
Description of Complaint: Car parked on street in front of house
Local Contact: Vacasa

Phone Number: 503.738.6680

Description of Action Taken by Local Contact: Illegal on-street parking in front of property. RP called contact number listed in file. "Paula" at call center stated she is not a "local" contact she is at a phone bank. Jeff Flory, CD Director also called in a complaint around the same time and also received a person at the phone bank. The problem was addressed and vehicles were moved th the two hour mark. According to Mr. Buck, the cars were shuffled and more cars arrived at 2100 hours.

Photos:

Same evening 2/24/2023. Over occupancy limit on cars in allowed 2 parking spaces.
Action Taken: This is the 2nd week a parking complaint was filed. Staff wrote an email to the owner and ask for a response and plan to mitigate this problem.

Conclusion: No response from Vacasa. Owner wrote that he would like to be the primary contact and would be able to reinstate his camera to monitor parking.

COMMUNITY DEVELOPMENT
LOCATION: 1387 AVE U
MAIL: 989 BROADWAY
SEASIDE, OREGON 97138
(503)738-7100

NOTICE OF COMPLAINT

March 7, 2023
RE: Vacation Rental at 461 14th Ave

Property Owner,
This is your second parking complaint at your VRD property. The first complaint filed on the February $20^{\text {nd }}$ was unresolved. This new complaint filed the following week, February 24, is for numerous cars in and outside of your designated parking area. You are allowed to have 2 cars in your driveway per your Notice of Decision.

Daytime complaint parking in street called local contact at 5:09 p.m.

[^0]This current complaint is filed for illegal on-street parking in front of property. The reporting person contacted your local contact, "Paula", at the Vacasa call center. She stated she is not a "local" contact she is at a phone bank. Jeff Flory, CD Director also called in a complaint around the same time and also received a person at the phone bank. After the call, the problem was addressed and vehicles were moved at the two-hour mark. According to the reporting person, the cars were shuffled and more cars arrived at 2100 hours, see picture above. The local contact was not called for the evening's violation. Local contacts should live in Clatsop County (as stated in your Notice of Decision) and respond to complaints within 2 hours. They should also be proactive to see that the guests are in compliance throughout their stay. Two complaints in two weeks tells me that this is not happening and your property.

I did hear from Lisa Payne, Vacasa, after the first complaint on 2/20/2023. Lisa stated: "...we have no record of calls being made to us in recent days or we certainly would have dealt with it. Honestly I am not really sure what to say when there is no record that they ever called us." Here is the record of the call that Vacasa claims was never made.

This is becoming a reoccurring problem at your property. The neighbors are upset and have a valid reason for being so. We are asking you to address this issue immediately and provide a plan to the city to prevent this violation. On-street parking is strictly prohibited and additional steps may be necessary to encourage guests to use the provided off-street parking spaces. Also, if necessary, have the property management company reread their signed Local Contact Acknowledgment Form that states they are to respond to and take remedial action on any complaint at the VRD within a reasonable period of time which the Planning Commission has deemed within a period of two hours. The requirement is for a local responsible party, not a phone bank and a long-distance phone call reprimanding the guests. In this instance the guests needed a personal warning and reminder of the rules.

Please be advised further complaints regarding parking issues at this VRD could result in a compliance hearing with the Seaside Planning Commission. If you have any questions, please feel free to call me at 503-738-7100 or e-mail me at amcbride@cityofseaside.us.

Respectfully,

Anne McBride

Transient Rental Compliance
City of Seaside, Oregon

Vacation Rental Dwelling Complaint

Address of Complaint: 461 14th Ave
Today's Date: 3/22/2023
Date of Incident: 3/17/2023
Time: 10:52 p.m.

Reporting Person's Information
Full Name: Anonymous
Address: Click or tap here to enter address.
Phone Number:Click or tap here to enter phone number.
E-mail Address: Click or tap here to enter email address.

Type of Complaint: Parking
Description of Complaint: Illegal parking.
Local Contact: Vacasa

Phone Number: 503.738.6680

Description of Action Taken by Local Contact: Local contact, Jennifer at the Vacasa phone bank, said she would call someone. It was noted she did not speak clear English. She stated she would send someone to address the complaint. No one came.

Photos:

Action Taken: Wrote to Owner and Vacasa Property Management to correct the problem of there not being action to address the complaint. Reiterated the requirement of a local contact's responsibility.

Conclusion: Spoke with owner who said he would follow up with Vacasa. Owner stated there were not guests on the property during the March 17 weekend therefore the complaint is not sustained. The question arose: Should the management company have known and shared with the reporting person that the property was not rented to guests and was being used by the owner?

As a result of the complaint, Vacasa has committed to having a dedicated number for a local contact to be called, if the contact is unavailable the call will be routed to a call center.

Anne McBride
Transient Rental Compliance

COMMUNITY DEVELOPMENT
 LOCATION: 1387 AVE U
 MAIL: 989 BROADWAY
 SEASIDE, OREGON 97138
 (503)738-7100

NOTICE OF COMPLAINT

March 22, 2023
RE: Vacation Rental at 461 14h Ave
Property Manager and Property Owner,
Please be advised we received a third complaint at your vacation rental dwelling on March 17, 2023. The reporting person stated the VRD guests were again parking on the street instead of in your designated offstreet parking spaces.

The property management company was notified but did not respond to the complaint. The RP stated he called the local contact had some difficulty communicating with the contact person at the phone bank and the problem was never resolved.

Mr. Mittelstaedt, I am going to require immediate action on your part. It takes the neighbors time to \log a complaint and take and post pictures. In their eyes it appears you have done nothing to mitigate these parking issues and they are becoming a regular weekly occurrence. You did write to me with your situation asking to be the initial contact for the neighbors. That can be done by your filling out a form with our office. However, that does not address the problem. I am suggesting you post "No Guest Parking" signs on your fencing in addition to monitoring the guest parking through your camera feed as you suggested. Also, you are going to have to establish a responsive local contact. In all three of the complaints the local contact was called and the problem persisted. I have suggested you have your local contact drive by the property to check for parking and occupancy violations. In addition, in previous complaints the number of cars pictured could lead one to infer that you may be violating your occupancy agreement.

Please correct this problem immediately. On-street parking is strictly prohibited and additional steps are going to be needed to encourage your guests to use the two off-street parking spaces. This weekend is Spring Break so the town will by busy with tourists and guests. Another complaint will bring you in front of the Planning Commission for review.

If you have any questions, please feel free to call me at 503-738-7100 or e-mail me at amcbride@cityofseaside.us.

Respectfully,

Anne McBride

Code Compliance Official

February 20, 2023 Possible over-occupancy violation

Vacation Rental Dwelling Complaint

Address of Complaint: 461 14th Ave
Today's Date: 6/23/2023
Date of Incident: 6/22/2022
Time: 5.25 p

Reporting Person's Information

Full Name: Anonymous
Address: 430 14th Ave
Phone Number:5037391420
E-mail Address: corysaccounts@gmail.com

Type of Complaint: Parking

Description of Complaint: Car parked on street in front of VRD

Local Contact: Vacasa

Phone Number: 855.757.7328 (Vacasa phone bank) 971.233.6166 (published) 503.738-6688
(discontinued)
Description of Action Taken by Local Contact: "And the person I spoke to at Vacasa was named Maurice and it wasn't a local contact I got sent to their automated system one of the phone numbers that I used to call didn't work 503-738-6690 so I had to call 971-233-6166 where I got the automated Vacasa number.

Photos:

Photo taken by RP Thursday 8:30 pm

Call log from RP to Local Contact

[^1]Action Taken: Emailed owner a Notice of Complaint. Received an email back: Hi Anne, I don't think that one is ours. It's across the street from us but there's also a vacation rental that is on that side of the street as well as the "party house" across the street from us.
I've sent this over to the local Vacasa contact to see if they have a record of any call. It is advisable for any pictures of complaints to be made close enough to get the license plate. This one is unusual since the first picture of the SIDE of the vehicle IS close enough to get the plate but taken from the wrong angle, the second picture is from the right angle but appears too far away.
I will also point out that one of the "sustained" complaints the writer is mentioning was also not one of ours it belonged to the "party house" across the street from us.

Letter requesting a plan and complaint response log sent to owner as a response to the above email. Included complaints, and LCAFs and Preferred Contact signed form.

Conclusion: Wrote to owner: We are continuing with parking complaints. This again was not addressed by your local contact. I drove by the morning after the complaint and the car was still parked where it had been reported and filmed the night before.

In a follow up letter, I stated:
... As for complaints, we have had four this year, including this one. It should be noted we have had complaints in past years but I was not responsible for the reporting, Jeff Flory was. Of the four, one is "not sustained," as you informed me you had personal friends visiting. However, 3 other complaints were sustained. I have attached them to this email.
2.20.2023 - Parking Complaint - Sustained
2.24.2023 - Parking Complaint - Sustained
3.17.2023 - Parking Complaint - NOT Sustained (owner use)
6.22.2023 - Parking Complaint - Sustained

Action will need to be taken to alleviate this continuing violation. The neighbors are sensitive to this issue and have tired of filing complaints. Within the next seven days please provide the complaint log and your proposal to correct this problem that is both viable and sustainable.

Received an email response from the owner. No action followed. Complaint sustained.

Anne McBride
Transient Rental Compliance

OREGON'S FAMOUS
ALL-YEAR RESORT

COMMUNITY DEVELOPMENT
LOCATION: 1387 AVE U
MAIL: 989 BROADWAY
SEASIDE, OREGON 97138
(503)738-7100

NOTICE OF COMPLAINT

June 26, 2023
RE: Vacation Rental at $46114^{\text {th }}$ Ave

Property Owner,
We would like to inform you we have received a complaint regarding your vacation rental property on June 22, 2023. According to the report, your guests had parked their vehicle on the street in front of your residence. The person reporting the incident contacted Vacasa at 5:39 p.m., but the issue remained unresolved and the car was still parked in what looks like the same location when I drove by on Friday morning at 7:50 a.m.

Your local contact has not been responding to and correcting the continuing parking complaints we are receiving. You are responsible for your guest's actions. I can see from your listing on Airbnb that you have installed cameras to monitor the guest parking. Unfortunately, this solution has not resolved the problem and your guests are continuing to park in the street. This is the third complaint this year; all three have been sustained. The reporting person did call Vacasa's newly provided local number, 971.233.6166 which went directly to the automated regional phone bank. Having a local contact in Clatsop County is a requirement of the City of Seaside Zoning Ordinance 6.137 (D):
D. Local responsible party. A local responsible party that permanently resides within the county must be identified by the owner. The responsible party will serve as an initial contact person if there are questions regarding the operation of the VRD. The owner shall provide the telephone number of the local contact person to the City, and to the immediate neighbors within the notification area (within 100' of the subject property).

Please contact our office in writing on how you propose to address these continuing parking complaints. As the summer season begins it is imperative you are in compliance with the regulations that are conditions of your permit.

If you have any questions, please feel free to call me at 503-738-7100 or e-mail me at amcbride@cityofseaside.us.

Respectfully,

Anne McBride
Transient Rental Compliance
City of Seaside, Oregon

June 27, 2023
Jean and Edward (Ted) Mittelstaedt
4021 SE Grand Ct
Portland, OR 97214
RE: 19-032VRD - 461 14th Ave, Seaside, OR 97138
Hello Ted,
Thank you for your response to the Notice of Complaint. You made mention of the parked car belonging to the neighbor's guests or property owners. As stated in the Local Contact agreement all complaints must addressed within a timely matter. The Reporting Person is under no obligation to take photos, but it's nice when they do, nor try to determine who owns the car before making a complaint. Complaints and the action to alleviate the problem are solely your responsibility as a VRD license holder. Below is the language from Vacasa's signed Local Contact form agreement and from the Preferred Local Contact which you signed.

> I understand I must respond to and take remedial action on any complaint at this VRD within a reasonable period of time. The Seaside Planning Commission has deemed a reasonable period of time to be two (2) hours.

One of the signed statements on the contact forms is your agreement to keep a complaint log to be available at the City's request. Can we refer to the complaint response log for confirmation on the complaints filed this year and the response from you or the management company? Below is the language from Vacasa's signed Local Contact form agreement and from the Preferred Local Contact which you signed.

I understand that I am expected to maintain a complaint response log that will be made available to city staff or the Planning Commission upon request. The complaint log should include the date, time, subject matter of the complaint, name and contact information of the reporting person (if not anonymous), and the action taken to resolve the complaint.

And this is in your notice of decision:

1. Local Contact: Vacasa, Rita SanRoy, 1803 S Roosevelt, Seaside, OR; will be the local contact for the VRD and she can be reached at (503) 345-9399.
The contact person must be available 24 hours a day to address compliance issues while the property is rented. Upon any change in the local contact, the owner must provide formal notice of the updated
contact information to the City and all of the neighboring property owners within 100'. Managers are required to notify the City any time they stop representing a VRD.

Local contact information is available at the Community Development Department (503) 738-7100, City Hall (503) 738-5511, or after business hours at the Seaside Police Department (503) 738-6311.
® The local contact must sign a Local Contact Acknowledgement Form that indicates they are aware of the Commission's expectations concerning response to complaints by neighboring residents and maintain a complaint response \log that would be made available to the city upon request. The signed form must be returned to the Community Development Department so it can be included in the land use file. An updated form must be submitted by the owner any time a new contact person is established.

You've asked to be the primary contact for complaints. I have added this information to the map neighbors can request that list the contact and phone number, however, please know, it is your responsibility to inform the property owners within 100 ' of your property of any changes to your local contact information. This is from your Notice of Decision. Have you let the neighbors know you are the primary contact?

The contact person must be available 24 hours a day to address compliance issues while the property is rented. Upon any change in the local contact, the owner must provide formal notice of the updated contact information to the City and all of the neighboring property owners within 100'. Managers are required to notify the City any time they stop representing a VRD.

As for complaints, we have had four this year, including this one. It should be noted we have had complaints in past years but I was not responsible for the reporting, Jeff Flory was. Of the four, one is "not sustained," as you informed me you had personal friends visiting. However, 3 other complaints were sustained. I have attached them to this email.
2.20.2023 - Parking Complaint - Sustained
2.24.2023 - Parking Complaint - Sustained
3.17.2023 - Parking Complaint - NOT Sustained (owner use)
6.22.2023 - Parking Complaint - Sustained

Action will need to be taken to alleviate this continuing violation. The neighbors are sensitive to this issue and have tired of filing complaints. Within the next seven days please provide the complaint log and your proposal to correct this problem that is both viable and sustainable.

Regards,

Anne McBride
Code Compliance Official
City of Seaside, Oregon
Enclosures:
Cc: Jeff Flory
Munirevs File

From:	Ted Mittelstaedt tedm@mittelstaedt.us
Sent:	Friday, June 30, 2023 4:28 AM
To:	Anne McBride; Lisa Payne
Cc:	Isaac Murray; Jeff Flory
Subject:	Re: 6.26.2023 NOTICEofCOMPLAINT Parking.Anne
Follow Up Flag:	Follow up
Flag Status:	Flagged

Caution! This message was sent from outside your organization. \quad Allow sender | Block sender

Hi All,

Anne and Lisa, my understanding is the "local contact" must by ordinance be a local residing in the city limits so Vacasa must update that since the current local contact that Anne had sent me the other day is Rita Sanroy and that is way out of date. Anne I've asked Lisa to send you current local contact information so that part of it should be taken care of, and as for the 100' notification I would assume also Vacasa would take care of that when the local contact is updated the same way they do it for any other change in local contact for any other property in Seaside. My guess is that the various cities on the Oregon Coast all have different notification requirements for that, and I am happy that I don't have to track all of that while Vacasa staff do.

As for me asking to be the primary complaint contact I do appreciate that you have added me to the request map. While technically I cannot be the "local contact" I can be the "primary complaint contract" and while that position is not defined by ordinance I can certainly act as a "local contact" would and follow the same 100' notification requirement as they do, and I will do that on our family's next visit to the house which is July 5th - 9th as that notification requirement is not burdensome.

Now, as for the complaint log mentioned in Anne's letter - I don't keep a spreadsheet or document of complaints but I do preserve all email.records and can easily make up a list of "formal" and "informal" complaints, that is, complaints taken through the city's process and complaints to me that are handled without going through the city's process - such as the call regarding the parking violation on $6 / 29$ where the renters were involved with a 3rd vehicle parked several blocks away. Which I don't even know if that is a violation anyway since I don't know if it was just visitors and not renters - all I know is what people report to me, I got the story from the neighbor on it and then from Vacasa when they said the car was moved later in the day in response to them contacting the renters. The logging and documenting part of this does not faze me at all since I'm one that keeps pretty extensive records. In fact, I even have all video of the property cameras for the last 3 years.

Now with that out of the way let's get to the real meat of the issue.
I believe there are 2 real issues here:

1) Response time to complaints and how they are being handled.
2) Generation of the complaints in the first place

For \#1, it is clear that Vacasa is operating like most larger companies do - they have a bureaucracy. This is NOT a bureaucracy that fails to function (like the federal government, LOL) but it IS a bureaucracy, nevertheless. Bureaucracies
are difficult to negotiate. Often you have to wait, leave messages, send emails, login to websites and file complaints, and wait for people to call you back and so on. None of this is going to be very friendly to people making complaints.

Vacasa is not trying to go out of it's way to put up barriers to complaints. They are, in fact, a young firm and still trying to figure all of this out. And I will also point out in their defense that they are responsive once you "work the bureaucracy" assuming you have the patience to do this. (which people complaining, aren't going to)

I have always maintained that for best complaint response the property owner must be intimately involved. The property owner - me and my wife - have a direct vested financial interest - it's our property. We all have to be realistic on this. Vacasa's minimum wage staff in a call center may be very nice people but they are going to continue to get paid whether a complaint is properly responded to or not. They don't have "skin" in the property. Only the property owner has that. Vacasa really needs to acknowledge this and stop telling their customers (the property owners - who absolutely are their customers just as much as the renters) to stay out of the business of handling property complaints. I've had this discussion with them before but it seems to fall on deaf ears. Maybe the majority of their homeowner customers are rich weirdos living in Florida who don't give a tinker's damn about some investment in Seaside and just want Vacasa to handle it. I don't know.

And from the city's part - you have to be realistic on this also. When the city stereotypes out-of-town property owners as people who are completely uninvolved and don't give a rat's ass about complaints, thus not even worthy of handling complaints then proceed to enshrine that attitude in a city ordinance that requires the local contact to live in the city that is just nuts. This is 2023. We have the best communications infrastructure in the world and in the history of the world. We need to be using it to punish property owners who don't give a rat's ass and just want to be uninvolved, and reward property owners who do want to be involved. And I daresay the majority of absentee property owners live in Oregon anyway.

I suppose that I don't "fit the mold" of a typical property management customer because I am constantly sticking my nose into how our property is being managed, it's not just complaint management. I know that this philosophy isn't going to be solved by this letter. But I AM saying that _I_ think things will run better in the complaint department for _our_ property if I'm the first contact for complaints. It's great to have Vacasa as a backup and a second contact for complaints but I need to be first. I'm not a nasty guy. I care what's going on there. I very much appreciate Anne's willingness to list me on the property map and I'll notify the neighbors and try to make friends with them. And Portland is only at most 2 hours away so if push comes to shove and I have to be out there, I'll be out there.

For \#2 now this is the rub. What is generating these parking complaints and what can be done to solve that?
Well I have a theory of what's doing it and how to solve it and I've mentioned this to Lisa and to the city before but I'll bring it up again. Our vacation rental home has bedrooms that are nice and big. Plenty of room. None of this business of converting a cramped attic into a space for one of the rooms. You can see this on the video walk-through for the house on the website. So given that, it's going to attract a certain type of renters. Adult renters. And we don't have the house full of kids toys and it's not a kid-friendly house for young kids with a lot of kid amenities. It's an adult-friendly house with a lot of adult amenities. All of this is very intentional on my wife's and my part. Our kids are grown and we are done with that. Our second home is going to reflect this and it's going to attract that clientele. We don't have a hot tub there so it's not going to attract young couples it's going to attract older couples who frequently have adult children.

Well one of the realities of this clientele is that they are all adults - so they have vehicles. Now, granted, the drive from Portland and other cities is costly with the price of gas specifically so there's incentive to carpool, not every last adult in the renting party has to drive their own car. But sometimes adult renters come and go as they please with their own cars. And many times they are going to have visitors, other couples who drive out for the day to visit and so on.

One thing I will do at the property which might help is modify the parking map that is posted there to make it clear where the other alternative parking areas are. There's public parking 4 blocks away that visitors can use. As for
overnight stayers another thing I will do is post information about acquiring an overnight parking pass from the Seaside Visitor's Bureau in the house.

And lastly, once more I will bring up that the house DOES have enough space for 39×18 parking spaces without modifying the frontage along the road and turning the entire frontage into a parking lot. This is on the original plot plan that is on file with the city and I, personally drew and measured out. So I know for a fact that the space exists. At that time the permit was granted we asked for 3 parking spots, and were only allowed 2 . Which I thought at the time was going to cause trouble. Which, apparently, it has. So because of that I let a little tree grow in the driveway since I was told that not only could I not have 3 but I had to do something to prevent the 3rd spot from being used by renters. Which I also thought at the time was EXTREMELY silly but I complied anyway. Of course, I was also told (when I asked) that well if it's just you and your family staying there you can use the 3 spots since you are owners. But renters can't.

I would be happy to make it easy to park 3 cars at the property which will encourage renters that bring 3 cars to park ALL of them in the driveway but I want something for doing that. I want that spot recognized as an official permitted spot. I feel this is COMPLETELY reasonable. It was the city (Jeff's predecessor in fact) that insisted I modify the parking space to only allow 2 renters to park as condition for the permit. That demand has caused problems with parking in the street and so in effect, the complaints my property is getting from the city were caused by the city. So it seems to me the fix is being reasonable, recognizing we have the space for 39×18 spots, that we don't need to modify the landscaping to make use of that space, and just letting us have 3 permitted VRD parking spots.

And as a bonus I will throw in, we won't even modify the Vacasa listing to show 3 spots, we will keep the listing at 2 spots for now. (unless things change and renters start behaving themselves LOL) Since the renters figure they can "get away" with an extra car, sort of like people driving 70 in a posted 55 , if we modified the listing to say 3 spots then I would expect they would start bringing 4 cars!

Thank you very much for your time!

Ted Mittelstaedt

On 6/28/2023 9:15 AM, Anne McBride wrote:

Thank you for your response Lisa. This dialog is best discussed with Ted, as he is the owner and ultimately responsible for any complaints that occur at his property. In response to your 971.233.6166 direct line, I've called it twice and have been transferred directly to the phone bank, once just after the line was initiated to test it and the second time on June 23, after I took the photo attached to the complaint.

My objective is to address the neighbor's concerns and enforce the requirements of the conditional use license agreement.

Thanks,
Anne

Anne McBride
Community Development
Code Enforcement Official
City of Seaside
971-601-1024 Direct Line
503-738-7100 Main Office

From: Lisa Payne lisa.payne@vacasa.com
Sent: Tuesday, June 27, 2023 9:23 PM
To: Anne McBride amcbride@cityofseaside.us
Cc: Isaac Murray isaac.murray@vacasa.com; Ted Mittelstaedt tedm@mittelstaedt.us
Subject: Re: 6.26.2023 NOTICEofCOMPLAINT Parking.Anne

Hello Anne,
I am definitely bummed to hear that the phone went straight to Vacasa because it never rang through on my phone. I have attached the call log. Frank had called the line on $6 / 6$ at $7: 10 \mathrm{pm}$ to let us know that a car was in the street and so we called and texted the guest to move their vehicle and then had staff drive over to verify it was moved right away. I have received a couple other calls on the line and have been successful in solving issues right away. Did you get a name of who at Vacasa the neighbor talked to?

We have added a layer of management for a smaller set of units and the Local Manager for N. Seaside is Isaac Murray. He has been added to the phone line as well as our South Seaside manager Taunya. There really shouldn't ever be a time someone doesn't answer unless there is a technical issue with the line which is rare. Isaac has also started driving regularly and saw the car parked on the street Friday and asked the guest to move their vehicle and the guest said the neighbor told them they could park there and he informed them that they cannot.

Needless to say we very much want to make sure this doesn't keep happening so we will add another layer on top of the strongly worded verbiage we send guests about parking and where they can and cannot park we will have each guest called before their stay to tell them at no time can they have any vehicle parked in the street whether it's the guest or visitors or they will be towed. I am hoping that this will help.

Thank you,

Lisa Payne

General Manager | N. OR Coast and WA Peninsula
m: 503-440-8348
vacasa.com
My days off are Saturday/Sunday.

$$
\text { - 8:57 VZW Wi-Fi } 饣 \quad 490
$$

WIRELESS CALLER

On Tue, Jun 27, 2023 at 6:04 AM Ted Mittelstaedt tedm@mittelstaedt.us wrote:

Hi Lisa,

Can you check into this?

Thanks,

Ted
--------- Forwarded Message --------
Subject:6.26.2023 NOTICEofCOMPLAINT Parking.Anne
Date:Mon, 26 Jun 2023 23:17:38 +0000
From:Anne McBride amcbride@cityofseaside.us
To:Anne McBride amcbride@cityofseaside.us

Hello Ted,

We are continuing with parking complaints. This again was not addressed by your local contact. I drove by the morning after the complaint and the car was still parked where is had been reported and filmed the night before. Please send us your plan, in writing, on how you will alleviate this continuing problem.

Thank you,

Anne

Anne McBride

Community Development

Code Enforcement Official

City of Seaside

971-601-1024 Direct Line

503-738-7100 Main Office

Vacation Rental Dwelling Complaint

Address of Complaint: 461 14th Ave
Today's Date: 7/8/2023
Date of Incident: 6/28/2022
Time: 1920

Reporting Person's Information

Full Name: Anonymous
Address: Click or tap here to enter address.
Phone Number:Click or tap here to enter phone number.
E-mail Address: Click or tap here to enter email address.

Type of Complaint: Parking

Description of Complaint: The complainant (RP) overheard VRD guest tell Red Car owner they couldn't park in front of the property. Together guest and Red Car owner reparked the car on 12th Ave in front of a local residence. Red Car was still parked on 12th Ave the next day. Later it was parked in the designated parking area of the home, so obviously this was a guest at the VRD. This made for three vehicles, two parked in the designated spaces and one parked on the street on 12th Ave.

Local Contact: Preferred Contact: Owner Ted Mittelstaedt
Phone Number: 503.867.6993
Description of Action Taken by Local Contact: RP: "I contacted the local contact which turned out to be the owner that lives in Portland so it was not a local contact which means they did not follow the proper procedure." The pictures are taken over a two-day period so the problem was not resolved by the owner.

Photos:

Cars parked in designated spaces

Red Car parked on 12th Ave

Red Car guest parked on 12th Ave next day

Red Car guest parked at property address

Action Taken: Wrote to owner regarding the parking complaint. Asked for complaint log book of the incident and described the burden additional cars put on residents within the City when guests bring more cars than are allowed for their designated parking spaces.

Conclusion: Prior to sending Notice of Complaint to the owner, the owner sent an email, his response read: (Note: I requested a 2023 complaint log in a prior email.) "Now, as for the complaint log mentioned in Anne's letter - I don't keep a spreadsheet or document of complaints but I do preserve all email records and can easily make up a list of "formal" and "informal" complaints, that is, complaints taken through the city's process and complaints to me that are handled without going through the city's process - such as the call regarding the parking violation on $6 / 29$ where the renters were involved with a 3rd vehicle parked several blocks away. Which I don't even know if that is a violation anyway since I don't know if it was just visitors and not renters - all I know is what people report to me, I got the story from the neighbor on it and then from Vacasa when they said the car was moved later in the day in response to them contacting the renters."

From his email it could be inferred the owner did not respond to the complaint he received from the RP because he wasn't sure if it was visitors or renters. This has been a problem in the past with this property and I have cited the Preferred and Local Contact Acknowledgment Form verbiage which states "I understand I must respond to and take remedial action on any [my emphasis] complaint at this VRD within a reasonable period of time." It does not say a response is required only for the complaints the local contact feels are valid. Complaint sustained.

Anne McBride
Transient Rental Compliance

COMMUNITY DEVELOPMENT
LOCATION: 1387 AVE U
MAIL: 989 BROADWAY
SEASIDE, OREGON 97138
(503)738-7100

NOTICE OF COMPLAINT

July 8, 2023
RE: Vacation Rental at 461 14 ${ }^{\text {th }}$ Ave
Property Owner,
We would like to inform you we received a complaint regarding your vacation rental property on June 29, 2023. According to the report, your guest was unable to park in your parking area because they brought more cars than the two parking spaces you provided allow. A guest was overheard by the reporting person (RP) telling the driver in the third vehicle to park on another street. They parked on what appears to be $12^{\text {th }}$ Ave. The pictures below show the car parked on-street at an alternate location, then parked in your driveway. One could conclude the red car belongs to one of your guests.

Guests parked in designated spaces

Additional car parked on-street at alternate residential street location

Additional car from alternate location parked at your home.

The RP contacted you as the preferred contact and felt because you didn't live locally, you did not qualify as a local contact. They further reported the car problem was not resolved.

According to your Conditional Use agreement, you have two off-street parking spaces for two cars. Having guests bring additional cars and parking them on-street within the city creates a burden on the neighboring
residents. There are paid parking lots available for overnight parking as you stated in an email dated 6.30.2023, "There's public parking 4 blocks away that visitors can use. As for overnight stayers another thing I will do is post information about acquiring an overnight parking pass from the Seaside Visitor's Bureau in the house."

On June 27, I asked you to provide your complaint log and your responses, please include this incident in your presentation.

If you have any questions, please feel free to call me at 503-738-7100 or e-mail me at amcbride@cityofseaside.us.

Respectfully,

Anne McBride
Transient Rental Compliance
City of Seaside, Oregon

Planning Commission Staff Report

APPLICATION(S):

MEETING DATE:
PUBLIC HEARING:
Report Date:
Applicant:
Owner:
Location:
Major Street Access:
Parcel Number(s) \& Size:
Parcel Zoning:
Adjacent Zoning:
Current Use of Parcel:
Adjacent Uses:
Previous Meetings:
Previous Approvals:
Type of Action:
Land Use Authority:
Future Routing:
Planner:

769-23-000022-PLNG - Conditional Use/Variance

August 1, 2023

Yes

July 21, 2023
Robert Leatherman
Robert Leatherman
2175 S Prom, Seaside, OR 97138
Beach Dr.
T6-R10-28AB-00400-Approximately .17 acres
High-Density Residential (R-3)
High-Density Residential (R-3)
Single-Family Residential
Single-Family Residential
None
None
Quasi-Judicial
Planning Commission
None
Jeff Flory, Community Development Director

A. Summary:

A Conditional Use and Variance request by Robert Leatherman for a four (4) bedroom Vacation Rental Dwelling with a maximum occupancy of ten (10) persons regardless of age. In addition to the conditional use, the applicant is requesting a variance to the front yard landscaping requirement.

Staff Recommendation:

Staff recommends the Planning Commission conduct a public hearing on the application, take public comments, and review and discuss the request. Unless submitted comments or other clarifications or justifications are needed, staff recommends the Commission adopt the findings, justification statements, and conclusions in this report and approve the applicant's request subject to the listed conditions.

B. Exhibits:

1. Applicant Submittals

2. Site Plan
3. Density Analysis
C. Location: 2175 S Prom, Seaside, OR 97138 (T6-R10-28AB-00400)

D. Background:

The applicant's property is a flag lot with Prom frontage and contains a four (4) bedroom single-family dwelling that the tax assessor's office shows as being built around 1947. The applicant states this property will be primarily used as their second home and is requesting a permit to utilize the property as a VRD when they are not using it.
E. Required Dates:

This application was accepted as complete on July 7, 2023. The 120-day decision timeframe is November 4, 2023.
F. Specific Request:

The applicant is requesting a conditional use permit for a four (4) bedroom Vacation Rental Dwelling with a maximum occupancy of ten (10) persons regardless of age. In conjunction with the conditional use request, the applicant is requesting a variance to the front yard landscaping requirement.
G. Process:

This request is being reviewed under Article 6, Article 7, and Article 10 of the Seaside Zoning Ordinance. Article 6 establishes the criteria for conditional uses, Article 7 establishes the criteria for Variances, and Article 10 establishes the process and procedures that are applicable to this request. The specific review criterion for Vacation Rental Dwellings is included in Section 6.137 of the Ordinance.

H. Community Review:

Notice of this public hearing was published in the Daily Astorian on July 13, 2023. Additionally, a mailed notice was sent on July 11, 2023, to all property owners within 100ft of the subject property.
I. Written Comments:

At the time of this report, no comments have been submitted to the Community Development Department.
J. Comprehensive Plan:

This property is located in the High-Density Residential land use designation as stated in section 3.1.2 of the Comprehensive Plan. Although the comprehensive plan states dwelling units in this area should be for full-time residential use; Vacation Rental Dwellings are a conditional use within the zone.

Section 4.1 of the Comprehensive Plan states: "Since the City of Seaside is a recreational community and major tourist attraction on the Oregon Coast, it is recognized that there is a need for recreational types of housing, including beach homes, vacation rentals, motels, recreational vehicle parks, and campgrounds."

K. Zoning Ordinance Criteria for a Conditional Use:

Pursuant to Section 6.137, Vacation Rental Dwellings (VRDs) within the R-2 and R-3 zones shall be reviewed by the Planning Commission whenever the surrounding VRD density is 20% or greater. A permit shall be issued as an accessory use provided the applicant can demonstrate by written application that all of the following standards are met:
a. Parking. One 9' x 18' off-street space will be provided for each bedroom in the unit, but in no event shall fewer than two spaces be provided.

Finding: The applicant's site plan shows sufficient parking area to accommodate four off-street parking spaces. The parking spaces are side by side in the applicant's parking area.
b. Number of Occupants. The maximum number of occupants cannot exceed three persons (over the age of three) per bedroom. The maximum occupancy, along with good neighbor rules, shall remain posted inside the front door in a conspicuous place. It is the owner's responsibility to ensure the renters are aware of these limitations.

The number of overnight renters or the maximum number of occupants may be reduced by the Code Enforcement Officer or Fire Marshal at the time of Inspection for valid code reasons.

Finding: The applicant's home is a four-bedroom single-family dwelling that allows an occupancy of ten (10) persons regardless of age.

The good neighbor rules, occupancy, and tsunami evacuation map are required to be posted in a conspicuous place within the VRD and are verified during the VRD inspection. This VRD will also be subject to annual inspections where these items are checked for compliance.
c. Residential yard areas. Front, side, and rear yards must maintain a residential appearance by limiting off street parking within yard areas. At least 50% of each yard area which is not occupied by buildings must be landscaped in some fashion so that parking will not dominate the yard.

Finding: The applicant's site plan shows the driveway accessing the required off-street parking area takes up 100% of the required front yard. The applicant's driveway is 10ft wide and is adjacent to the neighboring property's) driveway. The applicant purchased the property this way and did not cause the yard area to be completely paved and not landscaped. The applicant has requested a variance to this requirement.
d. Local responsible party. A local responsible party that permanently resides within the County must be identified by the owner. The responsible party will serve as an initial contact person if there are questions regarding the operation of the VRD. The owner shall provide the telephone number of the local contact person to the City, and to the immediate neighbors within the notification area (within 100 of the subject property).

Finding: The applicant has not listed a local contact at this time. A local contact will be required to be named and notice given to all neighboring property owners within 100ft prior to any transient rental.
e. Spatial distribution requirements. Within the medium density residential ($\mathrm{R}-2$) zones and high density residential ($\mathrm{R}-3$) zones, not more than $\mathbf{2 0 \%}$ of the properties within 100' of the subject property can be currently licensed for VRD use without Planning Commission review based on the following additional criteria:

1. The use of the property as a VRD will be compatible with the surrounding land uses.
2. The VRD will not contribute to excessive parking congestion on site or along adjacent streets.

A decision by the Commission to approve a VRD request may include conditions that would restrict the number of renters or total occupants in the VRD.

Finding: The density of surrounding VRDs within 100ft of the applicant's property is 21.40%. This application is being reviewed by the Planning Commission per the spatial distribution requirements. Should there be justification to add or modify conditions; the Planning Commission should discuss those justifications and determine what additional conditions or modifications to conditions could be placed on the property to alleviate any negative impact on the surrounding neighbors.
L. Zoning Ordinance Criteria for a Variance:

Pursuant to Section 7.030 a variance from the terms of this Ordinance shall not begranted by the Planning Director unless and until all of the standards in Section 7.031 and Section 7.032 are met. The property owner must demonstrate by written application that all of the following circumstances exist:

1. The manner in which exceptional or extraordinary circumstances apply to the property which do not apply generally to other properties in the same zone or vicinity, and result from lot size or shape legally existing prior to the date of this Ordinance, topography, or other circumstances over which the applicant has no control.

Finding: The applicant's flag-shaped lot was not created by his doing or request. The applicant purchased the property this way and the small yard area on the Beach Dr. frontage is not of sufficient size to accommodate landscaping.
2. How literal interpretation of the provisions of this Ordinance would deprive the applicant of rights commonly enjoyed by other properties in the same district under the terms of this Ordinance.
Finding: The applicant has a double frontage with front yard areas on Beach Dr. as well as the Prom. The applicant's Beach Dr. frontage is only 10ft wide. The required yard area is already an existing paved driveway and there is no room for the installation of landscaping.
3. That the special conditions and circumstances do not result from the actions of the applicant, and

Finding: The applicant purchased the property this way and the driveway and flag lot configuration were previously existing.
4. Evidence that granting the variance will not confer on the applicant any special privilege that is denied by this Ordinance to owners of other lands, structures, or buildings in the same district. No nonconforming use of neighboring lands, structures, or buildings in the same district and no permitted use of land, structures or buildings in other districts shall be considered grounds for issuance of a variance.

Finding: This request does not convey special privileges to the applicant. The applicant's property is a flag lot and his driveway is only 10ft wide and is the entire width of his front yard area.
Section 7.032 The Planning Director shall make all the following findings:

1. That the requirements of Section 7.031 have been met by the applicant for a variance.

Finding: The applicant has met the requirements in Section 7.031. The applicant did not cause the condition and without the variance, would be prohibited from the conditionally permitted use that is granted to nearby properties.
2. That the reasons set forth in the application justify the granting of the variance and that the variance is the minimum variance which will make possible the reasonable use of the land, building or structure, and

Finding: The applicant's driveway takes up the entire front yard due to the flag lot configuration. The applicant's Prom frontage is 100% landscaped. Granting the minimum variance will allow approval of the applicant's request for the conditionally permitted use that is permitted by other neighboring properties.
3. That the granting of the variance will be in harmony with the general purpose and intent of this Ordinance and of the Comprehensive Plan and will not be injurious to the neighborhood, or otherwise detrimental to the public welfare.

Finding: The applicant's request will be in harmony with the intent of the ordinance and not change the current configuration or landscape ratio of the Beach Dr. frontage. Granting the variance will not change the flag lot and driveway however, the variance will allow the applicant to be granted the conditionally permitted use he has applied for.

M. Additional Findings, Conclusions, and Justification Statements:

Mailed Notice Request Summary: A Conditional Use and Variance request by Robert Leatherman for a four (4) bedroom Vacation Rental Dwelling with a maximum occupancy of ten (10) persons regardless of age. In addition to the conditional use, the applicant is requesting a variance to the front yard landscaping requirement.

1. The applicant's submitted justification is adopted by reference and summarized below:
a. The applicant's plot plan indicates there will be at least (4) off-street parking spaces, the spaces are side by side on the applicant's parking pad on the S . Beach Dr. side of the dwelling.
b. The four (4) bedroom single-family dwelling will have a limited occupancy of (10) persons regardless of age.
c. The plot plan shows that parking (driveway) will take up more than 50% of the required front, rear, or side yards. The applicant has requested a variance for this requirement.
d. The applicant has not listed a local contact at this time. A local contact will be required prior to any transient rental.
2. The proposed VRD is located within a developed residential neighborhood primarily consisting of singlefamily dwellings. Currently, 21.4% of the surrounding properties within $100 f t$ of the subject property are licensed for VRD use and 22.2% are licensed within 200ft. All of the surrounding properties within 100 ft are zoned High-Density Residential (R-3).
3. The City of Seaside Planning Commission has established a policy concerning the maximum density of VRDs within neighborhoods that are not zoned Resort Residential (RR). Depending on the location, the Commission will only support VRDs where the surrounding density of VRD licensed properties, within 100 ft ; is equal to or less than 30% or 50% depending on their proximity to the beachfront areas of Seaside. The Planning Commission has determined that 100% of the oceanfront properties can be licensed for VRD purposes. The applicant's property is considered oceanfront.
4. The property has undergone a preliminary compliance inspection. Any corrections noted during the inspection must be completed and approved by the Community Development Department prior to any transient rental of the property unless an alternative time period is identified for specific items.
5. The City of Seaside Planning Commission adopted a list of policies and a uniform list of conditions they believed should be incorporated into the vacation rental dwelling review process. These are intended to be consistent with the provision in Section 6.031 which in part states: "the Planning Commission may impose, in addition to those standards and requirements expressly specified by this Ordinance, additional conditions which the Planning Commission considers necessary to protect the best interest of the surrounding area of the city as a whole."

In recognition of the Planning Commission's efforts and in keeping with the purpose statement for conditional uses, these conditions are incorporated into any decision to approve a VRD in an effort to promote compatibility of the proposed VRD with surrounding uses.
6. All property owners within 100 ft of the subject property were notified of the applicant's request. At the time of this report, the Community Development Department did not receive any letters concerning this request.
7. The proposed use is located within the tsunami inundation zone identified by the State of Oregon.
8. Negative impacts to a neighborhood cannot be predicted based solely on a change from full-time occupancy, part-time occupancy, long-term rental, or short-term rental. Short-term vacation rental dwellings (VRDs) are a regulated use subject to review. It is true that VRDs exhibit short-term stays by nonresidents; however, negative impacts can be caused by other permitted uses of longer duration. VRDs do have an identified local contact, restrictions that exceed those applied to the other uses of single-family dwellings, and a complaint resolution process that exceeds the "normal" restrictions applied to non-VRDs.
9. The property was not previously permitted as a VRD.
10. The glare from outdoor lighting can have an impact on adjacent properties. All exterior lighting should conform to the newly adopted Outdoor Lighting Ordinance even if any pre-existing outdoor lighting would normally be exempt under the provisions of the ordinance. This would basically require shielding
of any exterior lighting fixtures such that glare will not be visible from the surrounding property for any lighting element that exceeds 450 lumens, the equivalent of a 40 -watt incandescent bulb. This does not apply to any existing outdoor security lighting that is timed for short durations and activated by motion detectors.
11. The Commissioners have indicated their expectation for a local contact's response to complaints should be made very clear to the applicant and the local contact. In light of this, they have recognized a need for the local contact to sign and return a Local Contact Acknowledgment Form in an effort to clarify their role as it relates to the VRD's conditions of approval.
12. Pet-friendly rentals can create problems for neighboring property owners if the pets are allowed to run at large, trespass onto neighboring property, or cause a disturbance due to excessive barking when left unattended.
13. Repeatedly violating the conditions of approval could render the use incompatible with the surrounding uses and undermine the basis for approving the request. The conditions of approval could include provisions that would allow the permit to be suspended and/or revoked by the Planning Director or his designee in the event the conditions are repeatedly violated. Such action would be subject to review by the Planning Commission at the applicant/owner's expense.
14. Outdoor fire rings, fireplaces, hot tubs, \& spas can lead to late-night disruption in neighborhoods where sound seems to carry even more at night and people talk loudly. Smoke from outdoor fires can also be annoying to the occupants of neighboring properties. Staff routinely requires owners and managers to establish hours of use for these types of outdoor facilities to avoid late-night use and suggest limiting their use between the hours of 10:00 p.m. \& 7:00 a.m.
15. There is a formal process to bring VRDs back before the Planning Commission for reconsideration based on noncompliance with VRD standards \& conditions. The City encourages reporting problems with VRDs to the local responsible party and/or owner so problems can be resolved before any City action is required. If there are problems with a VRD that are not being resolved, staff can take actions intended to resolve the issues and can ultimately bring the matter before the Planning Commission if they are not resolved. Prior to review by the Commission, staff works with the owner and/or manager to try and address any noncompliance issues in an effort to address neighboring property owners' concerns. Past action by the Commission reiterated that additional conditions should be applied conservatively. They believe staff and the Commission can address additional conditions after a VRD is approved if and when an issue arises, instead of attempting to address every potential concern that may never actually come to fruition.
16. This area was not identified by the City Council or the Planning Commission as a residential area where VRDs should be discouraged due to the destabilizing impacts caused by repetitive property flipping within neighborhoods where the majority of homes are owned by local residents or distinct factors applicable to a defined neighborhood that would conflict with the intent of the Comprehensive Plan \& Zoning Ordinance.
17. The Seaside Planning Commission has established a waiting period for new applicants applying for a VRD permit on properties that were not previously licensed and newly constructed properties. This property was not previously licensed for VRD use so the applicant was subject to a 90 -day waiting period prior to an application being accepted. The applicant closed on the house on May 27, 2021.

CONCLUSION:

The Vacation Rental Dwelling and Variance requirements have been adequately addressed by the applicant and the request can be approved subject to the following list of special and standard recommended conditions of approval

RECOMMENDED CONDITIONS:

1. COMPLIANCE INSPECTION: The proposed vacation rental dwelling (VRD) must pass a compliance inspection conducted by the Community Development Department prior to any transient rental. This inspection will verify compliance with all VRD standards and conditions of approval and the applicant is hereby advised that failure to meet certain standards can result in a reduction in the maximum occupancy. The final occupancy will be noted in the land use file (769-22-000022PLNG) and reflected on the City of Seaside Business License. The license is not valid until the appropriate occupancy has been established by the approval of a final compliance inspection by the Community Development Department.

Please be advised the VRD has undergone a preliminary compliance inspection. Any corrections noted during the inspection must be completed and verified prior to transient rental unless an alternative time period for completion is identified for specific items.
2. PARKING SPACES: Four (4) off-street parking spaces (9ft $X 18 \mathrm{ft}$ per space) are required on site. These spaces shall be permanently maintained and available on-site for use by the vacation rental occupants. Vacation Rental Dwelling (VRD) tenants are required to park in the spaces provided on-site for the VRD. No on-street parking associated with this VRD is allowed at this location. Vehicles parked at VRDs may not project over the sidewalk and block pedestrian traffic. A parking map shall be posted inside the dwelling for the VRD tenants. The map must clearly indicate:

ON-STREET PARKING CANNOT BE USED BY RENTERS. PLEASE USE THE SPACES PROVIDED ON-SITE.

3. MAXIMUM NUMBER OF OCCUPANTS: Ten (10) persons regardless of age. The maximum occupancy, along with good neighbor rules, shall remain posted inside the front door in a conspicuous place. It is the owner's responsibility to ensure the renters are aware of these limitations. If the number of occupants is less than the original number requested, it may have been reduced for valid code reasons.
4. APPLICABILITY OF RESTRICTIONS: Properties licensed for VRD use will be expected to adhere to the VRD standards and rules throughout the entire year even when they are not being rented for profit. This will not apply to the dwellings when members of the owner's family are present.
5. OPEN YARD AREAS: Front, side, and rear yards must maintain a residential appearance by limiting off-street parking within yard areas. At least 50% of each yard area that is not occupied by buildings must be landscaped in some fashion so parking will not dominate the yard.

囚 The applicant has requested a variance to this requirement.

6. LOCAL CONTACT: The applicant has not named a local contact at this time. The applicant will need to name a local contact and provide their information to all property owners within 100 ft prior to any transient rental. The local contact must be available 24 hours a day to address compliance issues while the property is rented. Upon any change in the local contact, the owner must provide formal notice of the updated contact information to the City and all of the neighboring property owners within 100ft. Managers are required to notify the city any time they stop representing a VRD.

Local contact information is available at the Community Development Department (503) 738-7100, City Hall (503) 738-5511, or after business hours at the Seaside Police Department (503) 738-6311.

The local contact must sign a Local Contact Acknowledgement Form that indicates they are aware of the Planning Commission's expectations concerning response to complaints by neighboring residents and maintain a complaint response log that would be made available to the city upon request. The signed form must be returned to the Community Development Department so it can be included in the land use file. An updated form must be submitted by the owner any time a new contact person is established.
7. COMPATABILITY: A VRD will be compatible with the surrounding land uses and shall not contribute to excessive parking congestion on site or along adjacent streets.
8. EXTERIOR OUTDOOR LIGHTING: All exterior lighting must conform to the adopted Outdoor Lighting Ordinance even if any pre-existing outdoor lighting would normally be exempt under the provisions of the ordinance. This will
basically require shielding of any exterior lighting fixtures such that glare will not be visible from the surrounding property for any fixture that exceeds 450 lumens, the equivalent of a 40 -watt incandescent bulb.
9. ORDINANCE COMPLIANCE \& SOLID WASTE PICK-UP: All vacation rentals must comply with City ordinances regarding noise, smoke, dust, litter, odor, and solid waste collection. Weekly solid waste pick-up is required during all months.
10. REQUIRED MAINTENANCE: It is the property owner's responsibility to assure that the vacation rental dwelling remains in substantial compliance with Oregon State requirements for the following: Health, Safety, Building, and Fire Codes, Traveler's Accommodation Statutes, and with the Uniform Housing Code. Owners are hereby advised that Carbon Monoxide detectors must be installed and maintained in all transient rental occupancies.
11. PERMIT NON-TRANSFERABILITY: Vacation rental dwelling permits are personal in nature and accordingly are not transferable. Upon transfer of the property, the new owner, if he or she so desires, may apply for a new permit in accordance with City Ordinance.
® Although the conditional use for the VRD is not transferable, the variance approval will remain with the property upon transference to a new owner and is valid for any future request.
12. BUSINESS LICENSE, ROOM TAX REQUIREMENTS \& REVOCATION FOR NON-PAYMENT: A City Business License is required and all transient room tax provisions apply to VRDs. The business license must be obtained prior to any rental of the property. Renewals must be made in January of the permit year. If the business license fee or the transient room tax payments are thirty (30) days past due, the VRD Permit will be revoked unless a written extension is granted by the Finance Director.

Some web-based booking platforms (Airbnb, VRBO, etc.) collect and remit transient room tax directly to the city on behalf of VRD owners/applicants. It is the responsibility of the owners/applicants that utilize these platforms to report this revenue on their quarterly returns.
13. CONFLICTS \& POTENTIAL DENIAL FOR NON-COMPLIANCE: Upon receipt of two written complaints from two or more occupants of different residences who claim to be adversely affected by the use of the property as a vacation rental dwelling, or by notice from the City Code Compliance Officer that requirements or conditions of approval are not being met, the Planning Department will work with the parties involved to settle any conflicts. If the problems are not resolved, the permit will be reviewed by the Planning Commission as provided in Zoning Ordinance Section 6.137, Subsection 5 at the applicant's expense. Failure on the applicant's part to meet the standards or conditions will result in modification or denial of the permit.
14. COMPLAINTS: Applicants are hereby advised the City Code Compliance Officer routinely follows up on individual complaints if there is a valid code issue that needs to be addressed by the owner and/or manager of a VRD. Staff does not wait until the occupants of two different residences submit written complaints before they take action to achieve compliance. The VRD complaint procedures are outlined in an attachment to the notice of decision and an electronic complaint form can also be accessed on the City of Seaside's website:

www.cityofseaside.us/VRDComplaint

This form should be used to report alleged violations that are not being addressed by the local contact or property manager.
15. TIME PERIOD FOR APPROVAL, REQUIRED RE-INSPECTION: This VRD will be subject to an annual compliance inspection (subject to an applicable fee) during the second year of operation to ensure it maintains compliance with the VRD policies, conditions of approval, and ordinances applicable at the time of re-inspection. Re-inspection notices will be provided annually to the owner and the local contact. Failure to schedule an inspection or failure to correct any deficiencies identified during the inspection will result in the expiration of the conditional use permit and a new application must be approved prior to obtaining a business license to allow the use. Any new application will be subject to the VRD policies, conditions of approval, and ordinances applicable as of the date the new application is accepted.
16. TSUNAMI INFORMATION \&WEATHER RADIO: The owner shall post or otherwise provide a tsunami evacuation map in a conspicuous location within the VRD that clearly indicates "You Are Here". In addition, a NOAA weather radio, with automatic alert capabilities, must be provided in a central part of the VRD along with an informational sheet that summarizes the warning capabilities of the radio in the event of a distant tsunami.
17. GRACE PERIOD: If a currently licensed VRD sells to another party, staff is allowed to grant a temporary grace period of not more than 90 days in which current bookings can be cleared without being recognized as a violation. The manager or owner must provide staff with a list of the bookings during the grace period and no additional bookings can be taken during that time.
18. PET-FRIENDLY RENTAL: If the rental allows pets and they generate complaints related to running at large, trespassing onto neighboring property, or causing a disturbance due to excessive barking; additional restrictions or containment measures will be required by the Planning Director. The additional restriction can include prohibiting pets at this VRD.
19. REPEATED VIOLATION OF CONDITIONS: As a conditionally permitted use, owners must understand their use is expected to comply with their conditions of approval and they, their local contacts, and/or property managers will be held accountable for addressing compliance issues. Repeated violations will be subject to citations; and if the violations constitute a pattern of disregard or neglect resulting in adverse impacts to the neighboring property owner(s), their permit can be suspended and/or revoked by the Planning Director or his designee. Any such action would be subject to review by the Planning Commission to determine if the use can be reauthorized in the same manner as the original request, but subject to revised conditions. Review by the Commission would be at the applicant's expense based on the review fee applicable to the request at the time of review.
20. OUTDOOR FIRE RINGS, FIREPLACES, HOT TUBS, \& SPA FACILITIES: If these outdoor facilities are provided, their use will only be allowed between the hours of 7:00 a.m. \& 10:00 p.m. These hours must be posted along with any other established rules governing the use of the amenity. It is recommended the rules include a reminder there should be NO EXCESSIVE NOISE AT ANY TIME and renters should be considerate of the residents that live around the rental dwelling they are staying at.
If these hours prove to be insufficient to protect the neighboring property owners from unwanted noise or smoke, they will be further restricted by staff. The additional restriction can include prohibiting the use of the outdoor facility entirely by VRD tenants.

N. Recommendation and Alternatives:

Staff Recommendation:

Staff recommends the Planning Commission conduct a public hearing on the application, take public comments, and review and discuss the request. Unless submitted comments or other clarifications or justifications are needed, staff recommends the Commission adopt the findings, justification statements, and conclusions in this report and approve the applicant's request subject to the listed conditions.

Although they are not conditions of approval, the following is a reminder to the applicant.

- The conditional use will become void one (1) year from the date of the decision unless the permit is utilized or an extension of time is approved in the manner prescribed under the Seaside Zoning Ordinance.
- All necessary permits (such as structural, plumbing, mechanical, electrical, etc.) must be obtained prior to development.
- As with any permit, the applicant must meet all applicable standards in the Seaside Zoning Ordinance (e.g. erosion control, drainage, setbacks) and any other applicable City of Seaside Ordinances.

Alternative 1:

The Planning Commission may choose to continue this request to the regularly scheduled September 5, 2023, Planning Commission meeting to allow the Commission time to review submitted evidence or to allow
the applicant, other affected parties, and the public, additional time to review or submit further evidence, rebuttals, or justifications.

Alternative 2:

The Planning Commission may choose to hold the public hearing and review additional submitted comments or evidence. If new evidence justifies denial of the applicant's request, the Planning Commission could move to deny this application.

The information in this report and the recommendation of staff is not binding on the Planning Commission and may be altered or amended during the public hearing.

Seaside Planning Department Land Use Application

Office: 503-738-7100

Mailing Address: 989 Broadway Seaside, OR 97138
Physical Address: 1389 Avenue U Seaside, OR 97138

Proposed Use of Property and Purpose of Application:

$$
\begin{aligned}
& \text { primarily my personal home. Will rent at short time } \\
& \text { intervals when I am not there. }
\end{aligned}
$$

FOR OFFICE USE ONLY-DO NOT WRITE BELOW THIS LINE.

\square	Conditional Use	\square	Non-Conforming	\square	Subdivision	\square	Zoning Code Amendment
\square	Landscape/Access Review	\square	Planned Development	\square	Temporary Use	\square	Zoning Map Amendment
\square	Major Partition	\square	Property Line Adjustment	$\boxed{ }$	Vacation Rental \square PC	$\boxed{\otimes}$ PD	\square
\square	Minor Partition	\square	Setback Reduction	$\boxed{\otimes}$	Variance	\square	

Planning Department Use	
Date Accepted as Complete: 07.07 .23	By: J. Flory
File Number: OOO022-PLNG VRD	
Hearing Date: August 1, 2023	P.C. Action:

City of Seaside Planning Approval By: Anne McBride 05/09/2023

Vacation Rental Dwelling

 Property Information

1. TOTAL NUMBER OF BEDROOMS: 4
2. TOTAL NUMBER OF OFF-STREET PARKING SPACES: \qquad 4
a. VRDs are required to have a minimum of two parking spaces (each space must be $9^{\prime} \times 18^{\prime}$) plus one additional space for each bedroom in the dwelling over two bedrooms.
3. OCCUPANCY REQUESTED (OVER THE AGE OF THREE) : \qquad 10
a. To calculate your maximum occupancy, multiply the number of bedrooms by 3 . If the number of parking spaces is less than the number of bedrooms, calculate your occupancy by multiplying the number of parking spaces by 3 .
4. DO THE REQUIRED OFF-STREET PARKING SPACES TAKE UP MORE THAN 50\% OF THE VRD'S REQUIRED YARD AREAS?
Yes \qquad No \qquad
5. DO YOU HAVE ANY OWNERSHIP IN ANY ADDITIONAL PROPERTIES IN THE CITY OF SEASIDE?

Yes \qquad No X If yes what are the property addresses? \qquad
6. DO YOU HAVE OWNERSHIP IN ANY OTHER SHORT-TERM RENTALS? Yes X No \qquad
If yes, what City/County/State are they located in?
East port/Washington County/Maine
7. WHO WILL BE THE LOCAL CONTACT FOR YOUR VRD?
(Your local contact must reside within Clatsop County.)
Name \qquad Address \qquad 24-hr Phone \qquad
8. ATTACH SCALE DRAWINGS OF YOUR SITE PLAN, FLOOR PLAN, AND PARKING MAP.

By signing this application, the applicant acknowledges that if the request requires review by the Planning Commission (Seaside Zoning Ordinance 6.137E), additional Planning Commission review fees may apply and the applicant or a duly authorized representative must attend the Public Hearing. The applicant has answered these questions truthfully and to the best of their knowledge and the applicant understands that omitting information on this application could be grounds for denial of their request for VRD Conditional Use Permit.

Applicant Signature: \qquad Date: 12-29-2022
Printed Name: \qquad

Basement Floor Plan

$$
\square=2 \mathrm{ft} .
$$

Main Floor Plan

Seaside Planning Department Land Use Application

Office: 503-738-7100
E-mail: CDAdmin@CityofSeaside.us
Fax: 503-738-8765
Mailing Address: 989 Broadway Seaside, OR 97138
Physical Address: 1389 Avenue U Seaside, OR 97138

Proposed Use of Property and Purpose of Application:

"Flag" shaped property lot with back of house driveway only 10 feet wide. 10 feet does not meet 50% requirement for backyard landscaping, as required for VRD permit. I am requesting a variance to exempt landscaping requirement for this property.
(Attach additional pages if necessary.)

Owner	Applicant/Representative (Other than Owner)
Print Name of Property Owner: Robert Leatherman	Print Name of Applicant/Representative:
Address: 2175 South Prom Seaside, Oregon 97138	Address:
Phone: 765.667 .9594	Phone:
E-mail: meleatherman@yahoo.com	E-mail:
Signature of Property Owner:	Signature of Duly Authorized Applicant/Representative:

FOR OFFICE USE ONLY-DO NOT WRITE BELOW THIS LINE.

\square	Conditional Use	\square	Non-Conforming	\square	Subdivision	\square	Zoning Code Amendment	
\square	Landscape/Access Review	\square	Planned Development	\square	Temporary Use	\square	Zoning Map Amendment	
\square	Major Partition	\square	Property Line Adjustment	\square	Vacation Rental \square PC	\square PD	\square	Appeal
\square	Minor Partition	\square	Setback Reduction		Variance	\square		

Planning Department Use		
Date Accepted	as Complete: $06.14 .23$	By: J. Flory
File Number:	23-000022-PLNG VRD	
Hearing Date:	August 1, 2023	P.C. Action:

ARTICLE 7 VARIANCES FEE: \$ 430.00 Planning Director Decision $\$ 670$ for Planning Commission Decision

The Planning Director may authorize variances from the requirements of the Seaside Zoning Ordinance where it can be shown that, owing to special and unusual circumstances related to a specific piece of property, strict application of the Ordinance would cause an undue or unnecessary hardship.

No variance shall be granted to allow the use of property for a purpose not authorized within the zone in which the proposed use would be located.

In accordance with Article 7.031, a variance shall not be granted unless and until the following standards are met. The property owner must demonstrate by written application that all of the following circumstances exist. Please address how your request complies with the following standards.

1. What exceptional or extraordinary circumstances apply to the property that do not apply generally to other properties in the same zone or vicinity, and result from lot size or shape, legally existing prior to the date of this Ordinance (6/28/83), topography, or other circumstances over which the applicant had no control?

2. Which literal interpretations of the provisions of this Ordinance would deprive the applicant of rights commonly enjoyed by other properties in the same district under the terms of this Ordinance?

3. Are these special conditions and circumstances a result of the actions of the applicant? No,
4. Is there any evidence that granting the variance will not confer on the applicant any special privilege that is denied by this Ordinance to owners of other lands, structures, or buildings in the same district? No nonconforming use of neighboring lands, structures, or buildings in the same district and no permitted use of land, structures or buildings in other districts shall be considered grounds for issuance of a variance.

In addition to addressing the standards above, applications shall be accompanied by plans and specifications (plot plan), drawn to scale, showing the actual shape and dimension of the lot to be built upon, the sizes and locations on the lot of the buildings and other structures, existing and proposed, the existing and intended use of each building, structure, and/or part thereof, the number of families, if any, to be accommodated thereon, and such other information as is needed to determine conformance with this Ordinance.

Existing VRD

\square

Planning Commission Staff Report

APPLICATION(S):

MEETING DATE:
PUBLIC HEARING:
Report Date:
Applicant:
Owner:
Location:
Major Street Access:
Parcel Number(s) \& Size:
Parcel Zoning:
Adjacent Zoning:
Current Use of Parcel:
Adjacent Uses:
Previous Meetings:
Previous Approvals:
Type of Action:
Land Use Authority:
Future Routing:
Planner:

769-23-000030 - PLNG - Conditional Use - Highway Overlay Zone -
Subdivision
August 1, 2023
Yes
July 21, 2023
Cross Creek Land 1 LLC.
Cross Creek Land 1 LLC.
2315 N Roosevelt Dr (6-10-15BA-TL5800)
Broadway St.
6-10-15BA-TL5800 / Approximately 4.59 acres
General Commercial (C-3)
General Commercial (C-3)
Vacant Land
General Commercial
July 6, 2021
Approved as a conditional use for apartments in the C-3 zone as well as for a subdivision. Approvals expired in July of 2022.
Quasi-Judicial
Planning Commission
None
Jeff Flory, Community Development Director

A. Summary:

A conditional use request by Steve Olstedt and Ryan Osburn, Cross Creek Land 1 LLC, for a 74 -unit housing development (nine 6-plexes and six 4-plexes) within the General Commercial (C-3) zone. In conjunction with this request, the applicant has submitted a Highway Overlay Zone request and a preliminary subdivision plat that would create a separate lot for each building and common ownership of the access and off-street parking areas.

B. Exhibits:

Staff Recommendation:

Staff recommends the Planning Commission conduct a public hearing on the application, take public comment, and review and discuss the request. Unless submitted comments or other clarifications or justifications are needed, staff recommends the Commission adopt the findings, justification statements, and conclusions in this report and approve the applicant's request subject to the listed conditions.

1. Applicant Submittals

2. Site Plan
3. Public Comments
C. Location: 2315 N Roosevelt Dr (6-10-15BA-TL5800)

D. Background:

The property is approximately 4.59 acres of vacant land that previously went through a Planning Commission review for a conditional use for apartments, a subdivision, and a highway overlay zone. The approval was granted by the Planning Commission on July 6, 2021. The approval was void after one year due to delays with the project. The current application is similar to the project that was reviewed in 2021.
The property is accessed by a private road off Hwy 101. The vacant lot borders Aquatic Conservation (A-2) zone to the east, Hwy 101 to the west, and an existing commercial development to the south.
E. Required Dates:

This application was accepted as complete on July 13, 2023. The 120-day decision timeframe is November 10, 2023.

F. Specific Request:

A conditional use request by Steve Olstedt and Ryan Osburn, Cross Creek Land 1 LLC, for a 74 -unit housing development (nine 6-plexes and six 4-plexes) within the General Commercial (C-3) zone. In conjunction with this request, the applicant has submitted a Highway Overlay Zone request and a preliminary subdivision plat that would create a separate lot for each of the housing units and common ownership of the access and offstreet parking areas.
G. Process:

This request is being reviewed under Article 3, Article 6, and Article 10 of the Seaside Zoning Ordinance. Article 3 establishes the development standards and the outright permitted and conditionally permitted uses within the C-3 zone. Article 6 establishes the criteria for conditional uses. Article 10 establishes the process and procedures that are applicable to this request. In addition to the requirements in the Seaside Zoning Ordinance, this review will be reviewed under Ordinance 74-36 Subdivision and Land Partitioning Ordinance Seaside, Oregon.

H. Community Review:

Notice of this public hearing was published in the Daily Astorian on July 13, 2023. Additionally, a mailed notice was sent on July 11, 2023, to all property owners within 200ft of the subject property.

Written Comments:

ODFW:

ODFW submitted a public comment requesting the applicant meet the minimum setback requirements from the estuary and wetlands and that impacts to riparian areas are avoided during construction. ODFW requests limiting access to the setback area and avoiding future impacts to the riparian area and wetlands.

Finding: The applicant has provided a site plan that shows the setback from the Mean Higher High-Water line which is used to delineate the A-2 Zone. The applicant's proposed development is outside of that setback area. Additionally, a wetland study and delineation are provided in this site plan and the development avoids impacts to the wetland area. The developer will be required to flag these lines on-site prior to construction.
I. Comprehensive Plan:

This project is in the General Commercial land use designation. These commercial areas are designed to be east of the Necanicum River and are areas that do not require prime locations such as the central business district or resort area. While this is generally reserved for commercial uses, apartments are a conditionally permitted use in this zone.

J. Zoning Ordinance Criteria for a Conditional Use:

Pursuant to Section 6.031 of the Seaside Zoning Ordinance, all conditional use requests must comply with the specific standards in the zone and other applicable supplementary provisions in Article 4. In
permitting a new conditional use or alteration of an existing conditional use; the Planning Commission may impose additional conditions considered necessary to protect the best interests of the surrounding area of the city as a whole. These conditions may include (but are not limited to) the following:

1. Increasing the required lot size or yard dimension. Finding: The apartment complex is proposed to be constructed on 14 lots. The lots range in size from 2,625 sq. ft. to $3,195 \mathrm{sq} \mathrm{ft}$. The applicant's site plan shows a 50,730 sq. ft. Tract ' A ' that will have the ingress/egress parking and utilities for the project. Tract 'C' 96,076 sq. ft.) and Tract ' B ' ($7,515 \mathrm{sq}$. ft.) are provided as common open space. The C-3 zone does not specify minimum lot size requirements.
2. Limiting the height of buildings. Finding: The applicant's proposal is to install two-story and threestory 4-plex and 6-plex buildings with each building being on an individual lot. The applicant's proposed structures do not exceed the 45ft height requirement in the zone.
3. Controlling the location and number of vehicle access points. Finding: The proposed site plan will have two entrances/exits, one on the south side of the development and one at the termination of the private street.
4. Increasing the street width. Finding: The applicant's proposal will not call for the widening of any streets.
5. Increasing the number of required off-street parking spaces. Finding: The applicant plan shows the construction of 74 two-bedroom apartments. Each apartment is required to be provided with 1.5 parking spaces. The applicant's site plan provides 111 total parking spaces for this project. The applicant shows 75 standard spaces, 5 handicap spaces, and 31 compact spaces. The applicant is allowed up to 30% of the space to be compact. The applicant meets the off-street parking requirement for the project.
6. Limiting the number, size, location and lighting of signs. Finding: The applicant has submitted a lighting plan for the parking area of the project. The plan does not address any external lighting that may be attached to the buildings. All lighting for the project must meet the requirements in the Seaside Outdoor Lighting Ordinance.
7. Requiring diking, fencing, screening, landscaping or other facilities to protect adjacent or nearby property. Finding: The proposed site plan is bordered by open space, a highway, the private drive, and two existing commercial developments. The site plan shows existing fencing for the southern commercial building and no fencing for the building near the western side of the project. The applicant's proposal is to install privacy fencing to screen the refuse areas from view.
8. Designating sites for open space. Finding: The applicant's property has a significant amount of unimproved open space on the east side of the development. The open space is dominated by wetlands and is between the development and Neawanna Creek.

Section 3.407 Highway Overlay Zone Standards

1. Building Size: The maximum building size will be $\mathbf{2 0 , 0 0 0}$ square feet. Buildings larger than $\mathbf{2 0 , 0 0 0}$ square feet may be considered, but are subject to additional design review. Finding: No building is proposed to exceed 20,000 sq. ft.
2. Landscaping: A landscaped area must be provided along the highway frontage to assure that a buffer is provided between the development and the road surface. As a minimum requirement, the area must be equal to a 10^{\prime} width multiplied by the length of the highway frontage. Any public sidewalk area provided on private property adjacent to the highway would be deducted from the required area. Finding: The applicant's site plan shows a landscape buffer between the development and the highway. No formal landscape plan has been submitted.
3. Exterior Lighting: All exterior lighting shall be designed so the lighting source or lamp is recessed or otherwise covered to eliminate line of site visibility from neighboring properties, street travel lanes, or the surrounding environment. All exterior lighting must be dark sky compliant and shielded,
screened, or otherwise provided with cut-offs in order to prevent direct lighting on the adjacent properties, riparian area, or the state highway subject to the following exception: Line of site visibility and direct lighting of neighboring property can be permitted subject to a formal agreement with the neighboring property owner when the lighting will benefit joint parking, access, or safety. Finding: A detailed lighting plan was submitted with the site plan however, lighting attached to the proposed buildings was not included. All lighting must comply with the City's Outdoor Lighting Ordinance.
4. Yards Abutting the Highway Frontage: In an effort to promote more pedestrian-oriented development, regardless of yard requirements of the underlying zone, buildings must be located close to the property line adjacent to the highway such that the property line setback for the building entrance will not exceed 10'. Finding: The buildings closest to the highway frontage cannot have a minimum setback of 10^{\prime} from the property line because existing easements limit where the buildings can be located. It is not practical to provide a building entrance at this location based on the site or the proposed use.
5. Off-Street Parking: In addition to the requirements in Section 4.100, parking areas must address the specific design standards in Section 3.410. Finding: Off-street parking areas are not proposed between the buildings and the highway. The applicant has satisfied the parking requirements for the proposed use.

Section 7, the tentative subdivision plan shall contain the following information:

1. Proposed name, date, north point and scale of drawing. Finding: This criterion is met.
2. Location of the subdivision sufficient to define its location and boundaries and a legal description of the tract boundaries. Finding: This criterion is met.
3. Name and address of the subdivider. Finding: This criterion is met.
4. Appropriate identification of the drawing as a tentative plan. Finding: This criterion is met.
5. Name, business address and number of the registered engineer or licensed surveyor who prepared the plan of the proposed subdivision. Finding: This criterion is met.
6. The locations, names, widths, approximate radii of curves and grades of all existing and proposed streets and easements in the proposed subdivision and along the boundaries thereof, and the names of adjoining platted subdivisions and portions of the subdivisions as shall be necessary to show the alignment of streets and alleys therein with the streets and alleys in the proposed subdivision. Finding: This criterion is met.
7. Names of the record owners of all contiguous land. Finding: This criterion is met.
8. The approximate location and character of all existing and proposed easements and public utility facilities except water and sewer lines in the subdivision or adjacent thereto. Finding: This criterion is met.
9. The location and approximate dimensions of each lot and each to be numbered. Finding: This criterion is met.
10. Setback lines, if any, proposed by the subdivider. Finding: This criterion is met.
11. The outline of any existing buildings and their use, showing those which will remain. Finding: This criterion is met.
12. Contour lines where the data is made available by the City. Finding: This criterion is met.
13. The location of at least one temporary benchmark within the subdivision boundaries. Finding: This criterion is met.
14. City boundary lines crossing or bounding the subdivision. Finding: This criterion is met.
15. Approximate location of all areas subject to inundation or storm water overflow and the location, width, high water elevation flood flow and direction of flow of all watercourses. Finding: This criterion is met.
16. Any areas proposed to be cut or filled or otherwise graded or protected from flooding. Finding: This criterion is met.
17. If impractical to show on the tentative plan, a key map showing the location of the tract in relationship to section and township lines and to adjacent property and major physical features such as streets, railroads \& water courses. Finding: This criterion is met.
18. Streets to be held for private use shall be so indicated and all reservations or restrictions relating to such private streets are fully described. Finding: This criterion is met.

K. Additional Findings, Conclusions, and Justification Statements:

1. The applicant's submitted justification is adopted by reference and is summarized as follows:
a. The individual building footprints are approximately $40 \mathrm{ft} \times 48 \mathrm{ft}$.
b. The site plan shows nine three-story 6 -plex buildings and five two story 4 -plex buildings.
c. No new ODOT accesses are proposed.
d. Access and sidewalks are identified on the site plan and they provide access throughout the site.
e. Site circulation provides looped traffic and pedestrian access throughout the project site.
f. A wetland delineation has been provided by the applicant and the site plan shows the majority of the development will be outside of the identified wetland area.
g. Five refuse areas are identified on the plan.
h. The applicant has provided for both long and short-term bicycle parking.
2. The Conservation Aquatic (A-2) zoned area east of the upland portion of the property has a riparian setback that extends 25 feet landward of the mean higher high-water elevation (MHHW +5.01 NGVD). The Department of State Lands (DSL) can also require fill permits for any development within the identified wetland and can also require fill permits based on the highest tide datum for the estuary (+9.21 NGVD).
3. Drainage, sewer, \& water provisions are included on the plan and the engineer will need to determine if all of these systems will be adequate to meet the demands within the development and the public systems they will be connected to. Required upgrades to the system would be the responsibility of the applicant.
4. The applicant has provided for off-site safety improvements for the area where the private road accesses Hwy 101.
5. The applicant's submitted justification and site plan and traffic impact study are adopted by reference. These documents address the applicable criteria in the Highway Overlay Zone.
6. The traffic impact study does indicate queueing back up significantly during periods of peak demand but their final conclusion states: Queueing analysis of the buildout conditions shows that existing turn lanes on the highway can accommodate the additional demand generated by the proposed development. Although the queues exiting the site can be longer during the morning and evening peak hours, they are not expected to impede internal circulation or create queues of entering vehicles that could affect the highway operations

Proposed Conditions:

The proposed softball field project will satisfy the applicable development standards and be compatible with the surrounding area provided the following conditions are attached to the approval.

Condition 1: A Hazard Mitigation Plan (HMP) will be required for lots 2-9 prior to completing a preliminary plat for the development.

Condition 2: The final plat will reference the name of the private access road subject to the approval requirements of the Clatsop County Surveyor and acceptance of the abutting property owners.

Condition 3: Fire hydrant and FDC locations will need to be approved by the Fire Marshal.
Condition 4: Minor modifications to the applicant's proposed plan must be reviewed and approved by the Planning Director. These could be required in order to comply with other code issues applicable to the request or reduce impacts to the neighboring property. Any major changes or conflicts over a proposed modification will be reviewed with the Planning Commission prior to any final approval.
L. Recommendation and Alternatives:

Staff Recommendation:

Staff recommends the Planning Commission conduct a public hearing on the application, take public comments, and review and discuss the request. Unless submitted comments or other clarifications or justifications are needed, staff recommends the Commission adopt the findings, justification statements, and conclusions in this report and approve the applicant's request subject to the listed conditions.

Although they are not conditions of approval, the following is a reminder to the applicant.

- The conditional use will become void one (1) year from the date of the decision unless the permit is utilized or an extension of time is approved in the manner prescribed under the Seaside Zoning Ordinance.
- All necessary permits (such as structural, plumbing, mechanical, electrical, etc.) must be obtained prior to development.
- As with any permit, the applicant must meet all applicable standards in the Seaside Zoning Ordinance (e.g. erosion control, drainage, setbacks) and any other applicable City of Seaside Ordinances.

Alternative 1:

The Planning Commission may choose to continue this request to the regularly scheduled September 5, 2023, Planning Commission meeting to allow the Commission time to review submitted evidence or to allow the applicant, other affected parties, and the public, additional time to review or submit further evidence, rebuttals, or justifications.

Alternative 2:

The Planning Commission may choose to hold the public hearing and review additional submitted comments or evidence. If new evidence justifies the denial of the applicant's request, the Planning Commission could move to deny this application.

The information in this report and the recommendation of staff is not binding on the Planning Commission and may be altered or amended during the public hearing.

Seaside Planning Department Land Use Application

Office: 503-738-7100
E-mail: CDAdmin@Cityofseaside.us

Mailing Address: 989 Broadway Seaside, OR 97138
Fax: 503-738-8765
Physical Address: 1389 Avenue U Seaside, OR 97138
Name of Applicant:
33485 SW Ole l Pine Dr Weveruton 9714%
Street Address or Location of Property:
AdJacent to 2297 N Roosevitit Dr Seaside OR 97188

Proposed Use of Property and Purpose of Application:
multifamily 6 and 4 flex units. 2 ane 3 story buildings

$$
44^{\prime} \times 481 \text { Parking, landscape, utilities }
$$

FOR OFFICE USE ONLY -DO NOT WRITE BELOW THIS LINE.
Conditional UseNon-ConformingSubdivisionZoning Code AmendmentLandscape/Access ReviewPlanned DevelopmentTemporary UseZoning Map AmendmentMajor PartitionProperty Line AdjustmentVacation Rental \square PC $\square P D$Appeal
\square Minor PartitionSetback ReductionVariance

- Hor Overlay Zone

Onticellse		
Fee:	Receipt:	
Date Filed:	Time Filed:	By:

ACCESS REVIEW

The Planning Commission will do a site review of all proposed developments within 200' of Roosevelt Drive (Highway 101) whenever they will cause a significant number of vehicle trips. For the purpose of this review, a significant number of trips is 30 trips per day or 5 trips per hour. This review is intended to determine compliance with the City of Seaside Transportation System Plan and consider impacts of the development on the traffic carrying capacity and safety of Hwy 101.

The City of Seaside and the State Highway Division shall cooperate during the review of the proposed development to ensure the standard of the Overlay Zone are upheld. Certain actions will require the additional submittal of a Traffic Impact Analysis (TIA) in accordance with Section 3.406.1, A \& B. These include:
(i) Proposed developments generating vehicle trips that equal or exceed 600 daily trips or 100 hourly trips; or
(ii) Proposed zone changes or comprehensive plan changes; or
(iii) An onsite review by the Oregon Department of Transportation Region Manager, or authorized designee, indicates that operational or safety problems exist or are anticipated at the development property.

1. At this time, has the Planning Director indicated that a TIA must be submitted. \qquad . If yes, a TIA must be included with the applicant's submittal. The scope, methodology, and process for the TIA shall be reviewed with ODOT prior to implementation. Developers are hereby advised to coordinate directly with ODOT's Development Review Coordinator.

2. Plan Submittal Requirements:

a. A minimum of ten hard copies and one electronic copy of the proposed development plan must be submitted showing: streets, driveways, sidewalks, pedestrian ways, drainage facilities, off-street parking and loading areas; location and approximate dimensions of structures, utilization of structures, including activities and the number of living units; major landscaping areas; relevant operational data, drawings and/or elevations clearly establishing the scale, character and relationship of buildings, streets and open space. All elements listed in this subsection shall be characterized as existing or proposed and sufficiently detailed to indicate intent and impact.
b. Vicinity maps and information on the use and points of access utilized by any abutting property within 200 feet of the development site.
c. A boundary survey by a registered engineer or licensed surveyor.
d. If the final development plan will be executed in phases, a schedule thereof will be required.
Review Standards and Criteria: The planning Commission will review the submittal during a public hearing and determine whether the proposal conforms to the attached standards and criteria set forth in the U.S. 101 overlay zone.

Section 3.407 Standards. In the Highway Overlay Zone, the following standards shall apply:

1. Building Size: The maximum building size will be 20,000 square feet. Buildings larger than 20,000 square feet may be considered, but are subject to additional design review.
2. Landscaping: A landscaped area must be provided along the highway frontage to assure that a buffer is provided between the development and the road surface. As a minimum requirement, the area must be equal to a 10^{\prime} width multiplied by the length of the highway frontage. Any public sidewalk area provided on private property adjacent to the highway would be deducted from the required area.
3. Exterior Lighting: All exterior lighting shall be designed so the lighting source or lamp is recessed or otherwise covered to eliminate line of site visibility from neighboring properties, street travel lanes, or the surrounding environment. All exterior lighting must be dark sky compliant and shielded, screened, or otherwise provided with cut-offs in order to prevent direct lighting on the adjacent properties, riparian area, or the state highway subject to the following exception: Line of site visibility and direct lighting of neighboring property can be permitted subject to a formal agreement with the neighboring property owner when the lighting will benefit joint parking, access, or safety.
4. Yards Abutting the Highway Frontage: In an effort to promote more pedestrian oriented development, regardless of yard requirements of the underlying zone, buildings must be located close to the property line adjacent to highway such that the property line setback for the building entrance will not exceed 10°.
5. Off Street Parking: In addition to the requirements in Section 4.100, parking areas must address the specific design standards in Section 3.410.
Section 3.408 Criteria. Development proposals shall be evaluated according to the following criteria:
6. The proposal is consistent with the purpose of the overlay zone, and protects the capacity of US 101.
7. If the proposal involves a development with frontage along US 101, the required permits from ODOT will need to be obtained prior to construction. If a permit already exists, proof of permit shall be provided to the City and ODOT. Developers are advised to coordinate with ODOT concurrently with their development proposal to discern the appropriate permit requirements. To confirm an appropriate permit, or to obtain a permit, contact the Permit Specialist at ODOT.
8. The location, design, and size of the development are such that the development can be well integrated with the surrounding transportation facilities or anticipated future developments, and will adequately address the impact of development on US 101.
9. The location, design, and size of the development are such that traffic generated by the development can be accommodated safely and is less than the mobility standard on existing or planned streets, including US 101.
10. The location, design, and size of the development are such that the proposed uses will be adequately served by existing or planned facilities or services.
11. The location, design, and size of the development are such that the proposed uses will provide functional and efficient access and circulation for anticipated pedestrians, bicycles, and vehicles.

Section 3.409 US 101 Capacity Preservation Standards

Land use applications subject to the provisions of Section 3.400 shall consider the following:

1. Transportation demand management (TDM) measures shall be strongly encouraged as a way to minimize peak hour vehicle trips. The City will compile and adopt a list of TDM measures they wish to promote in an effort to help preserve the capacity of US 101. This list will be reviewed and evaluated by the City on an annual basis.

Section 3.410 Automobile Parking Standards

1. Off-street parking, driveways, and other vehicle areas shall not be placed between buildings and the highway; except the following vehicle areas are allowed where the approval body finds that they will not adversely affect pedestrian safety and convenience:
a. Schools, assisted living facilities, and other institutional uses may have one driveway not exceeding 20 feet in width plus parallel parking, including ADA accessible spaces, located between the street and the primary building entrance, provided that the building's primary entrance is connected to an adjacent street by a pedestrian walkway and the driveway/parking area is crossed by a clearly defined pedestrian walkway. The intent of this exception is allow driveways for particular uses that exhibit street-like features;
b. Attached single family housing developments (townhomes) with street-facing garages may have one driveway access located between the street and the primary building entrance for every two dwelling units, provided they meet the following criteria:
1) Where two abutting townhomes have street-facing garages, they shall share one driveway access that does not exceed 16 feet in width where it crosses the street right-of-way;
2) All primary building entrances shall be connected to a driveway (and sidewalk) via a pedestrian walkway that is not less than six (6) feet wide;
3) The maximum number of consecutively attached townhomes with garages facing the same street is four (4) (two driveways); and
4) Street-facing garages shall be setback a minimum of 20 feet from the street; where a building is placed less than 20 feet from the street, the 20 -foot garage setback may be accomplished by recessing the garage behind the front building elevation.
c. Commercial buildings and uses (e.g., neighborhood commercial or mixed-use) shall be encouraged to locate all of their off-street parking located behind or to the side of such buildings and uses and screened from abutting properties. Off-street parking shall not be located between any building and US 101.

Section 3.420 Design Standards Vehicular Access and Circulation

1. Permit Requirement - Access to US 101 requires an access permit from the Oregon Department of Transportation. The access permit or a condition that requires obtaining the permit must be attached as a condition of approval to a land use decision.
2. Closure or consolidation - The City (and/or ODOT if the parcel fronts US 101) may require the closing or consolidation of existing curb cuts or other vehicle access points, installation of traffic control devices and/or other mitigation as a condition of granting an access permit, to ensure the safe and efficient operation of the transportation system.
3. Site circulation - new developments shall be required to provide a circulation system that accommodates expected traffic on site. Pedestrian connections on the site, including connections through large sites, and connections between sites (as applicable) and adjacent sidewalks, must conform to the provisions in section 4.040.
4. Joint and cross access - requirement - The number of driveway and private street intersections with US 101 shall be minimized by the use of shared driveways for adjoining lots where deemed feasible by the City. When necessary for traffic safety and access management purposes, or to access flag lots, the City may require joint access and/or shared driveways in the following situations:
a. Shared parking areas
b. Adjacent developments
c. Multi-tenant developments and developments on multiple lots or parcels. Such joint accesses and shared driveways shall incorporate all of the following:
i. A continuous service drive or cross-access corridor that provides for driveway separation consistent with the applicable ODOT access management classification system and standards
ii. A design speed of 10 miles per hour and a maximum width of 20 feet, in addition to any parking alongside the driveway; additional driveway width or fire lanes may be approved when necessary to accommodate specific types of service vehicles, loading vehicles, or emergency service provider vehicles
iii. Driveway stubs to property lines (for future extension) and other design features to make it easy to see that the abutting properties may be required with future development to connect to the cross-access driveway;
5. Joint and cross access - reduction in required parking allowed - when a shared driveway is provided or required as a condition of approval, the land uses adjacent to the shared driveway may have their minimum parking standards reduced by 25 percent.
6. Joint and cross access - easement and use and maintenance agreement - property owners shall:
a. Record an easement with the deed allowing cross-access to and from other properties served by the joint-use driveways and cross-access or service drive
b. Record an agreement with the deed that remaining access rights along the roadway for the subject property shall be dedicated to the City and pre-existing driveways will be closed and eliminated after construction of the joint-use driveway;
c. Record a joint maintenance agreement with the deed defining maintenance responsibilities of property owners.
7. Access connections and driveway design - all driveway connections to local street right-of-way (access) and driveways shall conform to all of the following design standards:
a. Driveway width - driveways on local streets shall meet the following standards:
i. One-way driveways (one way in or out) shall have a minimum driveway width of 10 feet, and a maximum width of 12 feet, and shall have appropriate signage designating the driveway as a one-way connection.
ii. For two-way access, each lane shall have a minimum width of 10 feet and a maximum width of 12 feet.
b. Driveway approaches - local street driveway approaches shall be designed and located to provide exiting vehicles with an unobstructed view of other vehicles and pedestrians, and to prevent vehicles from backing into the flow of traffic on the public street or causing conflicts with on-site circulation (an exception may be provided for single family dwellings). Construction of driveway accesses along acceleration or deceleration lanes or tapers shall be avoided due to the potential for vehicular conflicts. Driveways shall be located to allow for safe maneuvering in and around loading areas. Driveway approaches to US 101 are subject to ODOT approval and must be consistent with state requirements.
c. Driveway construction - local street driveway aprons (when required) shall be constructed of concrete and shall be installed between the street right-of-way and the private drive. Driveway aprons shall conform to ADA requirements for sidewalks and walkways, which generally require a continuous unobstructed route of travel that is not less than 6 ' feet in width, with a cross slope not exceeding 2 percent, and providing for landing areas and ramps at intersections. Driveway Construction on US 101 is subject to requirements for access found in OAR Division 51.
8. Relocate access along local streets - upon property development or redevelopment, driveways and approaches on US 101 shall be analyzed to determine if the approach could be relocated onto a side street as far from the intersection with US 101 as possible, allowing closure of the approach on US 101.
9. Variance to Vehicular Access and Circulation Standards. Where vehicular access and circulation cannot be reasonably designed to conform to Code standards within a particular parcel, shared access with an adjoining property shall be considered. If shared access in conjunction with another parcel is not feasible, the City may grant a variance to the access requirements after finding all of the following:
A. There is not adequate physical space for shared access, or the owners of abutting properties do not agree to execute a joint access easement;
B. There are no other alternative access points on the street in question or from another street;
C. The access separation requirements cannot be met;
D. The request is the minimum variance required to provide adequate access;
E. The approved access or access approved with conditions will result in a reasonably safe access;
F. The visual clearance requirements of Chapter 3.1 will be met; and
G. Variances for street access deviations shall be subject to review and approval by the roadway authority.

In certain districts, conditional uses may be permitted subject to the granting of a Conditional Use Permit. Because of their unusual characteristics, or special characteristics of the area in which they are to be located, conditional uses require special considerations so they may be properly located with respect to the Comprehensive Plan and to the objectives of this Ordinance.

The Planning Commission shall have the authority to approve, approve with conditions, or disapprove Conditional Use Permits in accordance with the provisions in Article 6 of the Seaside Zoning Ordinance.

In addition to those standards and requirements expressly specified by the Ordinance, the Planning Commission may impose conditions, which are necessary to protect the best interests of the surrounding area or the city as a whole. These conditions may include the following:

1. Increasing the required lot size or yard dimension.
2. Limiting the height of buildings.
3. Controlling the location and number of vehicle access points.
4. Increasing the street width.
5. Increasing the number of required off-street parking spaces.
6. Limiting the number, size, location and lighting of signs.
7. Requiring diking, fencing, screening, landscaping or other facilities to protect adjacent or nearby property.
8. Designating sites for open space.

The Planning Commission will make a determination concerning a conditional use based on the applicant's justification of the following statements:

1. What is the proposed use in the zone?
$C-3$ Goneral Commercial
Multifaminy 4-plex i 6-plex
Indwidnal Lot
2. How will the development conform to the general development standards in Ordinance and the specific standards in the zone?
General development standards will be followed based on the proposeduse. zone standarals will be followed basedon pratically for the proposed use
3. How will the development meet any of the applicable standards in Article 6 ?
4. Describe any additional measures (if any) the applicant will take in order to protect the interests of the surrounding area or the city as a whole.
\qquad
5. Provide a site plan, drawn to scale, which indicates the following: the actual shape and dimensions of the lot, the sizes and locations of buildings and other structures (existing \& proposed), the existing and intended use of each building (include floor plans), and other information need to determine conformance with the development standards in the ordinance (e.g. setbacks, parking spaces, fences, accesses, landscaping, neighboring buildings, or uses, etc.)

ATTACH EXTRA SHEETS IF NEEDED

Please Print or Type

NAME OF APPLCANTCross Creek Land 1		AdDRESSP.O. Box 2870 Gearhart,OR		$\begin{aligned} & \text { ZIPCODE } \\ & 97138 \end{aligned}$			
ZONE	OVERLAY Zones			Townstip			
C3 General Commercial	Highway overlay	6 N	RANGE			SECTION	TAX LOT

PROPOSED USE OF PROPERTY AND PURPOSE OF APPLICATION(S):

Multifamily 6 and 4 unit 3 story buildings 44'X48' Parking, landscape, utilities.
(PLEASE INCLUDE THE APPROPRIATE PLOT PLAN.
IF ADDITIONAL SPACE IS NEEDED OR SUPPLEMENTAL INFORMATION IS REQUIRED PLEASE ATTACH)

U:L2004 \& After-My DocumentsIPlanning|FORMSIApplication Cover Sheet.doc

City of Seaside, Planning Department
989 Broadway, Seaside, OR 97138 (503) 738-7100
Land Use Application

Please Print or Type

NAME OF APPLLCANTCross Creek Land 1		$\begin{aligned} & \text { ADDRESS } \\ & \text { P.O. Box } 2870 \text { Gearhart,OR } \end{aligned}$		97138	
STREET ADORESS OR LOCATION OF Proprerty Adjacent to 2297 N Roosevelt Dr. Seaside, OR 97138					234
ZONE	OVERLAY ZONES	Townshlip	Range	SECTION	
C3 General Commercial	Highway overlay	6N	10W	15 BA	5800

PROPOSED USE OF PROPERTY AND PURPOSE OF APPLICATION(S):

Multifamily 6 and 4 unit 3 story buildings $44^{\prime} \times 48^{\prime}$ Parking, landscape, utilities.
(PLEASE INCLUDE THE APPROPRIATE PLOT PLAN.
IF ADDITIONAL SPACE IS NEEDED OR SUPPLEMENTAL INFORMATION IS REQUIRED PLEASE ATTACH)

U:I2004 \& After-My DocumentsIPlanningIFORMSIApplication Cover Sheet.doc

CONDITIONAL USE - ARTICLE 6

TYPE 2 - PLANNING COMMISSION DECISION

In certain districts, conditional uses may be permitted subject to the granting of a Conditional Use Permit. Because of their unusual characteristics, or special characteristics of the area in which they are to be located, conditional uses require special considerations so they may be properly located with respect to the Comprehensive Plan and to the objectives of this Ordinance.

The Planning Commission shall have the authority to approve, approve with conditions, or disapprove Conditional Use Permits in accordance with the provisions in Article 6 of the Seaside Zoning Ordinance.

In addition to those standards and requirements expressly specified by the Ordinance, the Planning Commission may impose conditions, which are necessary to protect the best interests of the surrounding area or the city as a whole. These conditions may include the following:

1. Increasing the required lot size or yard dimension.
2. Limiting the height of buildings.
3. Controlling the location and number of vehicle access points.
4. Increasing the street width.
5. Increasing the number of required off-street parking spaces.
6. Limiting the number, size, location and lighting of signs.
7. Requiring diking, fencing, screening, landscaping or other facilities to protect adjacent or nearby property.
8. Designating sites for open space.

The Planning Commission will make a determination concerning a conditional use based on the applicant's justification of the following statements:

1. What is the proposed use in the zone?

Wholesale or heavy commercial use on the fringe of central business district.
2. How will the development conform to the general development standards in Ordinance and the specific standards in the zone?
General development standards will be followed based on the proposed use. Zone standards will be followed based on practicality for the proposed use. Non standard zone requirements, 3.085 article 4?
3. How will the development meet any of the applicable standards in Article 6 ?

Technical Memorandum

To: Seaside Planning Commission

From: Adam Dailey
Copies: $\quad 1$
Date: 8/2/2021
Subject: Cross Creek Subdivision
Project: 20028, Cross Creek

Purpose

The purpose of this memo is to provide a preliminary outline for the Declaration of Covenants, Conditions, and Restrictions (CC\&Rs) for the Seaside Planning Commission's consideration. The final draft of the CC\&Rs will significantly conform to this outline but shall provide additional details as the declarant deems necessary through the project's development. Additional document administrative sections will be provided such as are typically found in CC\&Rs.

Draft CC\&Rs Outline

PROPERTY SUBJECT TO DECLARATION

Declarant hereby declares that all of the real property is owned and shall be owned, conveyed, encumbered, used, occupied and improved subject to this Declaration.

HOME OWNER'S ASSOCIATION ("ASSOCIATION")

- Deciarant shall organize an association of all owners within the legal boundaries of the Subdivision.
- Every person or entity who is an Owner of any Lot shall be a Proprietary Member of the Association.
- The Owners of each Lot shall pay the designated assessments levied by the Association.
- The Association shall have one class of voting membership: Voting Members shall be all Proprietary Members including the Declarant as to their initial ownership of lots prior to sale, their successors and assigns.
- Every Proprietary member (Owner of a Lot) and Associate Member shall have a right and easement of enjoyment in and to the Common property.
- Open space as designated on the plat. Said space shall be considered a Common Property. Common Property shall be subject to the right of common access by owners of all Lots within the Subdivision in accordance with the restrictions and regulations governing such use as set forth below.

COVENANT FOR MAINTENANCE ASSESSMENTS

- Lot Owner is deemed to covenant and agree to pay the Association regular annual or other regular periodic assessments or charges as established by the Association from time to time.
- Each such assessment, together with interest, costs, and reasonable attorney fees, shall also be the personal obligation of the person who was the Owner of such Lot at the time such assessment became due.
- The assessments levied by the Association shall be used exclusively for the purpose of promoting the recreation, health, safety, enjoyment, and protection of the residents, guests, and Lot Owners of the Subdivision and in particular for the maintenance of Common Property and the integrity of the Subdivision. Maintenance of the property shall include providing the garbage and recycling services located in the refuse areas within the common lot.
- The annual assessment may be established by a vote of the members.
- If the Association has any common profits at the end of any fiscal year, the Board of Directors place such funds in reserve for future use by the Association. No profits may be distributed to the Lot Owners/Members.
- If any Owner of a Lot or portion of a Lot fails to pay the respective dues, assessments, fees, or charges, made by the Association according to the terms of their agreement with the Declarant and in accordance with the terms and conditions of this Declaration of CC\&Rs of the Subdivision within 30 days, then the Association, or the party paying the cost on behalf of the property of the defaulting party may be enforced upon compliance with the terms and conditions set forth herein.

RESIDENTIAL COVENANTS

- Open space shall be exempt from assessments.
- Lots shall only be used for residential purposes as permitted by City Ordinance.
- Restrictions on Development of Lots and the Structure:
- Structures, including siding, will be consistent throughout the subdivision. Plans will be provided by the declarant in order for purchasers to maintain the standards.
- Parking of boats, trailers, campers, truck campers, trucks (excepting pickup trucks), recreational vehicles or equipment shall not be allowed in excess of 72 hours, nor shall repair of the same be permitted on any Lot or the Property, excepting within the confines of an enclosed garage or shop building or behind a screening fence, which shall be attached to the dwelling, garage or shop building. There shall be no overnight parking on any street in the Property development. No owner shall permit any vehicle which is in a state of disrepair to be abandoned or to remain parked upon any Lot or street in excess of 48 hours without be moved into an enclosed garage.
- Only exterior lighting provided by the Declarants plans shall be installed.
- No hunting or discharging of firearms is permitted within the Property.
- Only fencing provided by the Declarants plans shall be installed.
- The use of fireworks within the Subdivision is strictly prohibited.
- No structure of a temporary or transient character, including but not limited to tents, shacks, sheds, trailer, barn, or other out buildings or any other building not constructed or approved under the standards of the Uniform Building Code in effect at the time of placement, shall be located on any building site within the subject development.
- No noxious or offensive activity shall be carried on or upon any Lot.
- No storefront activity involving trades, crafts, businesses, professions, commercial, or similar activities of any kind shall be conducted on any Lot, nor shall any goods, equipment, vehicles, materials, or supplies be used in connection with any trade, service, or bùsiness be kept or stored on any Lot.
- No sign of any kind shall be displayed to the public view on any Lot or improvement, except one professionally made of not more than six (6) square feet advertising the Lot or single-family dwelling constructed thereon for sale or indicating the presence of a security system at the Lot.
- No animal, livestock, or poultry of any kind shall be raised, bred, or kept on any site, except dogs, cats, or other small household pets may be kept provided they are not kept, bred, or maintained in unreasonable numbers or for any commercial purposes.
- Pets are required to be controlled so as not to be a nuisance to other Owners, their guests, renters or invitees or wildlife.
- Construction of any Residence shall be completed, including exterior decoration and landscaping, within fourteen (14) months from the date of the start of such construction.
- Declarant hereby reserved to themselves, their successors and assigns, perpetual easements under, over, and across all common properties and under, over, and across strips of land running along all property lines of each Lot for the purpose of erecting, installing, constructing, maintaining, and operating drainage and irrigating systems, and pipes, wires, cables, and conduits for lights, heating, power, telephone, internet, water and any other method of conducting and performing any public or quasi-public utility service or function beneath, upon, or above the surface of each Common Property and such strips of land.

ENFORCEMENT

- In the event any Owner shall violate any provision of this Declaration, the Bylaws of the Association or other rules adopted by the Association, then the Association, acting through the Board of Directors, shall notify the Owner in writing that the violation exists and that the Owner is responsible.

MEMBERSHIP IN THE HOME OWNER'S ASSOCIATION

- The owners of all Lots within the Subdivision are designated as and required to be Members of the Association, or its successor entity.
- The membership commences when Lots are transferred from Declarant.
- Membership shall subject the Lot Owner and successors and assigns to the requirements to comply with the rules and regulations of the Association and the Bylaws in addition to the Declaration of CC\&Rs for the Subdivision.
- The non-declarant Owner and the subsequent Owners of each Lot shall be required to pay all dues, fees, and assessments levied by the Association.

Revision 1 May 25, 2023

Jeff Flory

Planning Director
City of Seaside
2341 N Roosevelt Dr.
Seaside, OR 97138

RE: - 21-035CU, 21-036HOZ \& 21-044SUB: A Conditional Use \& Highway Overlay Zone Review for a 74 Unit Apartment Complex \& Subdivision within the General Commercial (C-3)

Dear Mr. Flory,

Enclosed is a copy of the Notice of Decision from the August 3, 2021 Planning Commission meeting. I have modified the document to include how each item is being addressed in this submittal.

On another matter, I received a letter from my client, Ryan Osburn, from Building Official Bob Mitchell stating that he would not provide a plan review because the plans were "lacking". Mr. Mitchell stated that he was only providing a quick look over the drawings because the application was incomplete. The plans were submitted for plan review, not for approval of the subdivision. Mr. Mitchel incorrectly assumed the scope of my services provided for the project as a civil engineer and incorrectly assigned many of the deficiencies to me. As a civil engineer, I do not provide any building architectural, mechanical, and plumbing design. My responsibility stops about 5' from the building. The lack of information provided was due to other consultants not providing the work they were hired to provide. I am not responsible for their work or assuring it gets submitted. Mr. Mitchell also incorrectly identified deficiencies in the plans that are not in actuality deficient. I can provide a point-by-point response to each of his claims if you would like to see it. I am not sure why he would say he was providing a look over and then proceed to make very detailed incorrect comments. The majority of the information is in the plans. There was at least one item he commented on that should have been forwarded to the proper department to make the decision on acceptance. This is regarding the fire access lane width which I have had experience getting waived previously on other projects.

Aside from incorrect comments on the plans, there are several instances where Mr. Mitchell insinuates that the applicant should find a different consultant. Insinuations like these are very unprofessional, especially based on incorrect information. They do not belong in a review document, much less a City of Seaside official document.

I have been contracted with the City of Warrenton for a couple of years to provide review of development projects on behalf of the Community Development Department and Public Works. In that capacity, essentially as a City employee, I provide reviews that help applicants submit plans that meet the City's requirements in order to get their projects moving so I have a reasonable expectation of what a professional review provides. I hope you will accept the civil plans and the attached NOD responses as a part of the project submittal package and ensure that your department gives the review and attention that the applicant deserves. I would also ask that the plans not be kept from the other departments so they may review and make their own review and decisions on what, if any, comments are necessary. I look
forward to working with you to move the project forward in a productive manner contrary to this experience so far.

If there are any questions, please don't hesitate to call me.

Sincerely,

Enclosures: None
Cc: Client
File
Joey Daniels, City of Seaside Fire Chief
Genesee Dennis, City of Seaside Fire Marshal

RENEWAL DATE: DECEMBER 31, 2023

COPY OF
 SEASIDE PLANNING COMMISSION NOTICE OF DECISION

Date:

To:
From:
Location: $\quad 2341$ N Roosevelt Dr. (T6-R10-15BA-TL5800)
RE: $\quad \mathbf{2 1 - 0 3 5 C U}, \mathbf{2 1 - 0 3 6 H O Z} \& 21-044 S U B:$ A Conditional Use \& Highway Overlay Zone Review for a 74 Unit Apartment Complex \& Subdivision within the General Commercial (C-3)

PLANNING COMMISSION DECISION:

On August 3, 2021; the Seaside Planning Commission conditionally approved the above referenced requests in accordance with the provision in the City of Seaside Zoning Ordinance.
The Commission's decision was based on any written comments received prior to the hearing, the oral \& written testimony provided during the hearing, the information submitted by the applicant, and the staff report. The approval will allow the applicant to develop a 74 unit apartment complex (nine 6-plexes \& five 4-plexes) at 2341 N Roosevelt Dr. The upland property is zoned General Commercial (C-3) and the preliminary subdivision plat will allow the creation of a separate lot for each of the housing units, a common ownership lot for the access and off-street parking areas, and an undeveloped open space lot along the eastern portion of the property that abuts the Neawanna Creek Estuary Conservation Aquatic (A-2) zone.
In addition to the findings, justification statements, and conclusions adopted by the Commission; the request was approved subject to the applicant satisfying the following condition(s):
Condition 1: The applicant must provide short and long term bike parking in accordance with the provision in Appendix G of the TSP for the apartments (18 covered long term \& 4 short term spaces). These are commonly incorporated into stairwells on the ground floor.

Long Term bicycle parking is provided the individual building entrances, design by others. Short Term parking is provided as shown on civil plan sheet C4. See appendix A.

Condition 2: The applicant will need to determine what DSL permitting requirements will be necessary in order to provide the working walkway for the Fire Department. Based on this determination, a preliminary revised plan must be submitted for review in order to show the walkway can be feasibly incorporated into the proposed development plan.
As requested by the Fire department, a 4' wide walkway through the 11 private properties, centered 9^{\prime} from the buildings to accommodate the fire ladders has been provided. See sheets C4, C5, C6, C7. See appendix A. The wetland boundary has been determined and concurred with by the State, see Appendix B. Determination WD2021-0124 dated $8 / 2 / 21$. This condition is met.

Condition 3: The applicants engineer will need to determine if the planned drainage, sewer, \& water system capacity is adequate to meet the demands within the development and the public systems they will be connected to. This determination will need to be submitted for review and approval by the Seaside Public Works Director. The plan would also need to address water quality measures that would be incorporated into the system in an effort to limit oil \& sediment from entering the public storm water system or local groundwater. Required upgrades to the system would be the responsibility of the applicant.

Water System (Fire) Demand:
Neither the Fire Chief, the building designer, or the fire sprinkler system have provided the fire demand for the buildings to me . Therefore, I have assumed a minimum fire flow of 1500 gpm per the Fire Code Table B105.2. There are two existing fire hydrant lines coming off of the existing looped water main within 165 feet of the proposed 2 connections. Because these are previously accepted hydrants, it can be reasonably assumed the proposed hydrants flow a minimum flow of 1500 gpm and that the 8 -inch water main is adequate to provide this flow particularly in a looped condition to these hydrants at an assumed 90 psi working pressure. Tapping two additional hydrants between these two existing hydrants will also be provided with the existing flow due to the continuity equation. The two proposed fire laterals will flow 1500 gpm each with a pressure drop at the outlet of about 11 psi. The existing water main and proposed hydrant branches are adequate to serve the development. See appendix C.

Sewer Demand:

The sewer demand calculations are based on typical values used for number of people per bedroom and gallons of waste per capita per day. A peak factor of 4 is conservatively used. The average peak demand is calculated as 0.20 cubic feet per
second. The existing sewer pipe capacity is calculated using Manning's formula and is 0.90 cubic feet per second. The proposed sewer pipe capacity is calculated using Manning's formula and is 0.82 cubic feet per second. The existing and proposed sewer is adequate to serve the development. See appendix C.

Storm:
The storm demand calculations are included in the HYDRCAD data in appendix D. The proposed system has a demand of 2.73 cubic feet per second using a conservative storm recurrence interval of 100 years. The Existing system which connects to the proposed system has a capacity of 4.95 cubic feet per second using Manning's. The total demand on the proposed system is the sum of these systems, 7.68 cubic feet per second. The existing system downstream from the development will be upgraded with a larger pipe with a capacity of 8.05 cubic feet per second using Manning's. The existing and proposed storm drainage is adequate to serve the development. See appendix D.
This condition is met.

Condition 4: The applicant must provide a detailed exterior lighting plan. The plan must document that all exterior lighting fixtures will be designed to limit glare in accordance with the City's Outdoor Lighting Ordinance, the Highway Overlay Zone provisions, and limit lighting of the adjacent wetland area.

The lighting plan is provided, see sheet C4.6. See appendix A. This condition is met.

Condition 5: The trash and recycle area must be appropriately screened from public view or enclosed within a building(s). The capacity must meet guidelines established by Recology and additional trash and recycle areas may need to be incorporated into the development plan.

Several refuse areas have been provided, see sheet C4. See appendix A. Coordination with Recology dictated the pickup frequency, size, and number of receptacles has been used to provide adequate service. This condition is met.

Condition 6: The final plan for development must document the buildings setback from the MHHW elevation contour line.

The MHHW elevation of 5.01 NGVD (8.6' NAVD), as provided by the City, and the 25^{\prime} setback is shown on sheet C4. See appendix A. This condition is met.

Condition 7: A Hazard Mitigation Plan (HMP) will be required for lots 2-9 prior to completing a preliminary plat for the development.

The hazard mitigation plan is provided by others.

Condition 8: Minor modifications to the applicant's proposed plan must be reviewed and approved by the Planning Director. These could be required in order to comply with other code issues applicable to the request or reduce impacts to the neighboring property. Any major changes or conflicts over a proposed modification will be reviewed with the Planning Commission prior to any final approval.

The plan is fundamentally identical to the plan provided for the Planning Commission hearing and incorporates the requested changes and other minor changes made to meet the requirements of the Notice of Decision. See appendix A. This condition is met.

Condition 9: The examples of pedestrian safety measures that were provided by the applicant's traffic engineering firm must be incorporated into the access at North Roosevelt Drive, in addition to improved lighting at the north and south ends of the crosswalk, providing reflective thermal plastic slow, arrows \& crosswalk demarcations, flashing crosswalk signage, approaching crosswalk along the northbound deceleration lane, and improved lighting along the future walkway north of the title company and dental office property, subject to authorization by the Oregon Department of Transportation under their permit authorization for the current access.

The safety measures presented in the Cross Creek Multifamily Development Pedestrian Safety Plan, dated July 16, 2021 by Lancaster Mobely which have been included in the plans include:

- Install R1-5bR sign on Driveway Approach Leg
- Install High-Visibility Continental Crosswalks
- Install "SLOW" Pavement Legend at Northbound Right Turn Approach

The following safety measures recommendations are modified:

- Relocation the existing street light was not looked upon favorably by the Commission Chair as an improvement to the safety at the driveway and is not implemented in the plans.
- Additional private street lights are proposed on the private property adjacent to the access entrance, see sheet C4.6.

Note that ODOT will not allow the installation of any flashing beacons, RRFBs, or pedestrian push button activated control devices at the driveway access to the State

Highway. The implementation of this condition is not possible due to the Authority Having jurisdiction. See appendix A.

Condition 10: The final plat will reference the name of the private access road as Cross Creek Lane, Way, or Drive subject to the approval requirements of the Clatsop County Surveyor and acceptance by the other abutting owners. If this name is unacceptable, the alternative name must be approved by the Planning Commission at the time the final plat is reviewed.

Changing of the name is to be provided by the final plat document by others.

Although they are not conditions of approval, the following is a reminder to the applicant.

- The conditional use will become void one (1) year from the date of decision unless the permit is utilized or an extension of time is approved in the manner prescribed under the Seaside Zoning Ordinance.
- All the applicable subdivision plat approval processes must be followed in addition to obtaining and the necessary permits (such as structural, plumbing, mechanical, electrical, etc.) prior to development.
- As with any permit, the applicant must meet all applicable standards in the Seaside Zoning Ordinance (e.g. erosion control, drainage, setbacks), the Subdivision and Land Partition Ordinance, and any other applicable City of Seaside Ordinances.

APPEAL PROVISIONS:

The Planning Commission's decisions may be appealed in accordance with Section 10.068 of the Seaside Zoning Ordinance which states:

Any action or ruling of the Planning Commission pursuant to this Ordinance may be appealed to the City Council within fifteen (15) days after Notice of Decision is provided pursuant to Section 10.066. Written notice of the appeal shall be filed with the City Auditor. If the appeal is not filed (or postmarked) within the fifteen (15) day period, the decision of the Planning Commission shall be final. If the appeal is filed, the City Council shall receive a report and recommendation on it from the Planning Commission and shall hold a public hearing on the appeal.
The appeal must be filed at the Planning Department (located at 1387 Ave. U) or mailed to 989 Broadway, Seaside, OR 97138. The appeal must include the applicable fee of $\$ 625.00$.
If you have any questions regarding this decision or the appeal process, please contact the Planning Department at (503)738-7100. The Notice of Decision date and appeal deadline are listed below. Appeals must be submitted or postmarked by this deadline.

FINAL DECISION JUSTIFICATION SUMMARY:

The Planning Commission's final decision was supported by the Applicant's submitted evidence \& justification, the adopted information in the staff report, \& any substantive oral or written testimony or evidence that was provided prior to or during the public hearing process. The staff report provided findings, justifications, conclusions \& conditions to support the Commission's final decision, subject to any modifications. If any information in the report was modified by the Commission prior to adoption by deleting, adding, or amending the findings, conditions, or conclusions; they are noted below.

FINAL PLANNING COMMISSION DECISION MODIFICATION

In addition to the original staff report's findings, justification statements, and conclusions adopted by the Commission; the requests were approved subject to the following amendments to the information included in the staff report:

The Planning Commission added the following conditions of approval.

Condition 9: The examples of pedestrian safety measures that were provided by the applicant's traffic engineering firm must be incorporated into the access at North Roosevelt Drive, in addition to improved lighting at the north and south ends of the crosswalk, providing reflective thermal plastic slow, arrows \& crosswalk demarcations, flashing crosswalk signage, approaching crosswalk along the northbound deceleration lane, and improved lighting along the future walkway north of the title company and dental office property, subject to authorization by the Oregon Department of Transportation under their permit authorization for the current access.

Condition 10: The final plat will reference the name of the private access road as Cross Creek Lane, Way, or Drive subject to the approval requirements of the Clatsop County Surveyor and acceptance by the other abutting owners. If this name is unacceptable, the alternative name must be approved by the Planning Commission at the time the final plat is reviewed.

Appendices

[THIS PAGE LEFT BLANK INTENTIONALLY]

Appendix A

[THIS PAGE LEFT BLANK INTENTIONALLY]

Appendix B

[THIS PAGE LEFT BLANK INTENTIONALLY]

Kate Brown, Governor

Dear Mr. Olstedt:
The Department of State Lands has reviewed the wetland delineation report prepared by Critical Areas Consulting for the site referenced above. Please note that the study area includes only a portion of the tax lot described above (see the attached maps). Based upon the information presented in the report and additional information submitted upon request, we concur with the wetland and waterway boundaries as mapped in Figure 6 of the report. Please replace all copies of the preliminary wetland map with this final Department-approved map.

Within the study area, one wetland (Wetland 1, totaling approximately 1.08 acres) one waterway (Neawanna River estuary), one pond (Detention Pond), and one ditch (Ditch 1) were identified. The wetland and estuary are subject to the permit requirements of the state Removal-Fill Law. Normally, a state permit is required for cumulative fill or annual excavation of 50 cubic yards or more in the wetland or below the ordinary highwater line (OHWL) of the waterway (or the 2-year recurrence interval flood elevation if OHWL cannot be determined). However, the Neawanna River estuary and all hydrologically connected wetlands (Wetland 1) are designated essential salmonid habitat; therefore, fill or removal of any amount of material within the wetland or below the Highest Measured Tide (HMT) elevation for the estuary may require a state permit. The HMT elevation for the estuary is 12.81 feet above NAVD88. In addition, the Detention Pond and Ditch 1 are above the HMT elevation and are exempt per OAR 141-085-0515(7) and (8); therefore, are not subject to these current state permit requirements. Finally, this portion of the estuary is a state-owned waterway; any activity encroaching within the submerged and submersible land may require a lease, registration, or easement to occupy state-owned land. Please contact Blake Helm at (503) 986-5288 for more information.

This concurrence is for purposes of the state Removal-Fill Law only. We recommend that you attach a copy of this concurrence letter to any subsequent state permit application to speed application review. Federal or local permit requirements may apply as well. The U.S. Army Corps of Engineers will determine jurisdiction under the Clean Water Act, which may require submittal of a complete Wetland Delineation Report.

Please be advised that state law establishes a preference for avoidance of wetland impacts. Because measures to avoid and minimize wetland impacts may include reconfiguring parcel layout and size or development design, we recommend that you work with Department staff on appropriate site design before completing the city or county land use approval process.

This concurrence is based on information provided to the agency. The jurisdictional determination is valid for five years from the date of this letter unless new information necessitates a revision. Circumstances under which the Department may change a determination are found in OAR 141-090-0045 (available on our web site or upon request). In addition, laws enacted by the legislature and/or rules adopted by the Department may result in a change in jurisdiction; individuals and applicants are subject to the regulations that are in effect at the time of the removal-fill activity or complete permit application. The applicant, landowner, or agent may submit a request for reconsideration of this determination in writing within six months of the date of this letter.

Thank you for having the site evaluated. If you have any questions, please contact the Jurisdiction Coordinator for Clatsop County, Daniel Evans, PWS at (503) 986-5271.

Sincerely,

Peter Ryan, SPWS
Aquatic Resource Specialist

Enclosures

ec: Robert Bogar, Critical Areas Consulting
City of Seaside Planning Department (Maps enclosed for updating LWI) Brad Johnson, Corps of Engineers
Dan Cary, SPWS, DSL
Oregon Coastal Management Program (coast.permits@state.or.us)

WETLAND DELINEATION / DETERMINATION REPORT COVER FORM

Fully completed and signed report cover forms and applicable fees are required before report review timelines are initiated by the Department of State Lands. Make checks payable to the Oregon Department of State Lands. To pay fees by credit card, go online at: https://apps.oregon.gov/DSL/EPS/program?key=4.

Attach this completed and signed form to the front of an unbound report or include a hard copy with a digital version (single PDF file of the report cover form and report, minimum 300 dpi resolution) and submit to: Oregon Department of State Lands, 775 Summer Street NE, Suite 100, Salem, OR 97301-1279. A single PDF of the completed cover from and report may be e-mailed to:
Wetland_Delineation@dsl.state.or.us. For submittal of PDF files larger than 10 MB , e-mail DSL instructions on how to access the file from your ftp or other file sharing website.

FIGURE 2: Tax Lot Map

FIGURE 6:

DSL WD \# 2021-0124
Approval Issued 08/02/2021
Approval Expires 08/02/2026
Wetland Delineation Map

Note: The wetland boundary flagging, data plot locations, and pond top of bank were located the field using a Garmin GPS meter accurate to about ± 1 meter in open conditions. The study area is accurate to within about ± 4 feet with the boundary drawn based on aerial photographs using adjacent areas on each side of the wetland boundary. The ditch location was placed on the aerial photograph using surface features noted in the field and is accurate to approximately ± 4 feet. Wetlands (1.08 acres) in the Study Area (2.30 acres) account for about 47% of the study area and are considered intertidal emergent wetlands. The delineated wetland continues off site to the north and south.

```
Field Date(s): January 19 \& July 9, 2021
Drawing By: RSB
Drawing Date: Revised July 30, 2021
Report Title: Wetland Delineation
```

Project: Wetland Delineation
Map No.: 61015BA05800
Address: Not Assigned
City/County: Seaside, Clatsop County

Appendix C

13967 Marquesas Way \#30 Marina del Rey, CA 90292
(503) 468-8600
adam@amengnr.com

Cross Creek Development

Sewer Demand and Capacity

Persons per bedroom (Assumed) $=$	1.50
Bedrooms per unit (Actual) $=$	2.00
Number of Units (Actual) $=$	74.00
Total number of bedrooms (Actual) $=$	148.00
Total population $=$	222.00
Gallons per capita per day (Assumed) $=$	120.00
Peak Factor (Assumed) $=$	4.00
Average peak demand gallons per day $=$	106560.00
Average peak demand gallons per hour $=$	4440.00
Average peak demand gallons per minute $=$	74.00
Average peak demand cubic feet per second $=$	0.20
6" Pipe Capacity at 0.4% Slope	0.82

Water (Fire) Demand and Capacity

Fire flow gallons per minute demand (Assumed) =	1500.0	gpm
Existing 8" water main minimum capacity (Assumed) $=$	1500.0	gpm
Existing 8" water main operating pressure (Assumed) =	90.0	psi
Operating pressure at the beginning of the $6^{\prime \prime}$ hydrant branch = (Minor loss through the $8^{\prime \prime}$ to $6^{\prime \prime}$ treansition is neglected)	90.0	psi
Elevation Change from the branch tee to the hydrant =	5.5	ft
Pressure drop due to elevation change (Bernoulli's Equation) =	-2.4	psi
Pressure drop due to friction loss (Darcy-Weisbach equation) =	-6.6	psi
Pressure drop due to minor losses		
(Minor Loss Calculation for Liquids and Gases, gate valve and 90 bend) $=$	-1.9	psi
Total pressure drop =	-10.9	
Pressure available at the hydrant outlet =	79.1	psi

Appendix D

Cross Creek Stormwater

Prepared by A.M. Engineering
HydroCAD® 10.10-7a s/n M06985 © 2021 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.679	98	Bldg (Impervious)
0.174	98	Concrete (Impervious)
0.887	98	HMAC (Impervious)
0.365	68	Open Space $<50 \%$ Grass cover, Poor, HSG A (Landscape)
$\mathbf{2 . 1 0 4}$	93	TOTAL AREA

Cross Creek Stormwater

Prepared by A.M. Engineering
HydroCAD® 10.10-7a s/n M06985 © 2021 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.365	HSG A	Landscape
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
1.739	Other	Impervious
$\mathbf{2 . 1 0 4}$		TOTAL AREA

Cross Creek Stormwater

Prepared by A.M. Engineering
Printed 7/6/2022
HydroCAD® 10.10-7a s/n M06985 © 2021 HydroCAD Software Solutions LLC

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other $($ acres $)$	Total $($ acres $)$	Ground Cover
0.000	0.000	0.000	0.000	0.679	0.679	Bldg
0.000	0.000	0.000	0.000	0.174	0.174	Concrete
0.000	0.000	0.000	0.000	0.887	0.887	HMAC
0.365	0.000	0.000	0.000	0.000	0.365	Open Space $<50 \%$ Grass cover,
						Poor
$\mathbf{0 . 3 6 5}$	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$	$\mathbf{1 . 7 3 9}$	$\mathbf{2 . 1 0 4}$	TOTAL AREA

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points $\times 9$
Runoff by SBUH method, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentImpervious:

Subcatchment Landscape:

Reach Combined:
Runoff Area=75,759 sf 100.00% Impervious Runoff Depth >5.85 " $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=0 / 98$ Runoff=2.52 cfs 0.848 af

Runoff Area $=15,908$ sf $\quad 0.00 \%$ Impervious Runoff Depth >2.69 " $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=68 / 0$ Runoff=$=0.22 \mathrm{cfs} 0.082$ af

Inflow=2.73 cfs 0.930 af Outflow=2.73 cfs 0.930 af

Total Runoff Area $=2.104$ ac Runoff Volume $=0.930$ af Average Runoff Depth $=5.30$ " 17.35% Pervious $=0.365$ ac 82.65% Impervious $=1.739$ ac

Summary for Subcatchment Impervious:

Runoff $=\quad 2.52$ cfs @ 7.87 hrs, Volume= 0.848 af, Depth> 5.85"

Routed to Reach Combined:
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 100 Year 24 Hr Rainfall=6.10"

	Area (sf)	CN	Description
$*$	29,568	98	BIdg
$*$	7,561	98	Concrete
$*$	38,630	98	HMAC
	75,759	98	Weighted Average
75,759		100.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment Impervious:

Summary for Subcatchment Landscape:

Runoff $=0.22$ cfs @ 7.99 hrs, Volume= 0.082 af, Depth> 2.69"

Routed to Reach Combined :
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 100 Year 24 Hr Rainfall=6.10"

	Area (sf)	CN Description			
*	15,908	68	pen Spac	<50\% Gr	ass cover, Poor, HSG A
15,908		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment Landscape:

Summary for Reach Combined:

[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Reach Combined:
Hydrograph

4

$\frac{\text { VICINTTY MAP }}{\text { noscale }}$

SITE INFORMATION
PARKING REQUIREMENT PER SEASIDE ZONING ORDINANCE NO. 83-10 SECTION 4.100 OFF-STREET PARKING REQUIREMENTS: APARTMENT DWELLINGS, CONDOMINIUM OR TIME SHARE PROJEC 1.5 PER UNIT. 111 TOTAL PARKING SPACES
\qquad 2nanownwoesmersmes

Menill

SEWER PLAN NOTES:

WATER PLAN NOTES
Mand

.
con erase Name

STREET PLAN NOTES

and

Coin

PERMIT SET

MANHOLE WTH PRECAST FLAT SLAB Top

Nawew ewew

都

				\％		

769-23-000030-PLNG

lancaster mobley

Cross Creek Multifamily Housing 2315 N Roosevelt Dr.
 Transportation Impact Study
 Seaside, Oregon

Date:
June 17, 2021
Prepared For:
Steve Olstedt
Ryan Osburn
Adam Dailey, PE, A.M. Engineering

Prepared by:
Nick Mesler, EIT
Jennifer Danziger, PE

RENEWS: $12 \cdot 31 \cdot 21$
Executive Summary 4
Project Description 5
Introduction 5
Location Description 5
Vicinity Roadways 5
Study Intersections 6
Site Trips 6
Trip Generation 6
Trip Distribution 6
Traffic Volumes 9
Existing Conditions 9
Background Conditions 11
Buildout Conditions 11
Safety Analysis 13
Crash History Review 13
Warrant Analysis 14
Preliminary Traffic Signal Warrants 14
Left- \& Right-Turn Lane Warrants 14
Operational Analysis 14
Performance Standards 14
Delay \& Capacity Analysis 15
Queuing Analysis 15
Conclusions 16
Appendix 17

List of Figures

Figure 1: Vicinity Map 7
Figure 2: Trip Distribution and Assignment 8
Figure 3: Traffic Volumes 12

List of Tables

Table 1: Vicinity Roadway Descriptions 5
Table 2: Vicinity Intersection Descriptions 6
Table 3: Trip Generation Summary 6
Table 4: Existing Site Uses Trip Generation Summary 10
Table 5: Crash Type Summary 13
Table 6: Intersection Capacity Analysis Summary 15
Table 7: Queuing Analysis Summary - Buildout Year 202315

Executive Summary

1. The Cross Creek site is located on tax lot $61015-\mathrm{BA}-05800$ in northern Seaside. The project site encompasses approximately 4.47 acres and is bordered by existing commercial uses to the west, N Roosevelt Drive (Oregon Coast Highway US 101) to the north, and Neawanna Creek to the east and south. The site is currently zoned C3 (General Commercial), which allows the development of the proposed 74-unit multifamily units with a conditional use permit.
2. The project intends to take access to the local transportation network via the existing, shared driveway serving the nearby commercial uses. The driveway connects to N Roosevelt Drive (US 101) via a side-street stopcontrolled intersection. US 101 functions as a Principal Arterial as identified in the City of Seaside Street Functional Classifications and is classified as a Statewide Highway in the Oregon Highway Plan. US 101 will service all the project traffic.
3. The proposed development is projected to generate an additional 36 net new morning peak hour trips, 45 net new evening peak hour trips, and 418 net new average weekday trips.
4. No significant trends or crash patterns were identified at any of the study intersections that were indicative of safety concerns. No additional safety mitigation is recommended per the crash data analysis.
5. The preliminary traffic signal analysis determined that signal warrants are not projected to be met at the site access driveway.
6. All study intersections are currently operating acceptably per ODOT standards and are projected to continue operating acceptably in Background Year 2023, both with and without the addition of project traffic.
7. Queueing analysis of the buildout conditions shows that existing turn lanes on the highway can accommodate the addition demand generated by the proposed development. Although the queues exiting the site can be longer during the peak hours, they are not expected to impede internal circulation or create queues of entering vehicles that could affect the highway operations.

Project Description

Introduction

This report describes and evaluates the transportation impacts associated with the proposed Cross Creek multifamily residential property conditional use permit application located at 2275 N Roosevelt Drive in Seaside, Oregon. The site is currently zoned C3 (General Commercial), which allows the development of the proposed 74-unit multifamily units with a conditional use permit. To gain approval for the conditional use permit, a Transportation Impact Study (TIS) is required.

The purpose of this study is to determine whether the transportation system within the vicinity of the site is capable of safely and efficiently supporting the existing and proposed uses and to determine any mitigation that may be necessary to do so. Detailed information on traffic counts, trip generation calculations, safety analyses, and level of service calculations is included in the appendix to this report.

Based on correspondence with the City of Seaside and the Oregon Department of Transportation (ODOT), a safety and capacity/level of service analysis was conducted at one intersection: US 101 \& Site Driveway

Location Description

The project site is located on tax lot 61015-BA-05800 in northern Seaside. The project site encompasses approximately 4.47 acres and is bordered by existing commercial uses to the west, N Roosevelt Drive (Oregon Coast Highway US 101) to the north, and Neawanna Creek to the east and south. The site is currently zoned C3 (General Commercial), which allows the development of the proposed 74 -unit multifamily units with a conditional use permit.

The project intends to take access to the local transportation network via the existing, shared driveway serving the nearby commercial uses. The driveway connects to N Roosevelt Drive (US 101) via a side-street stopcontrolled intersection. US 101 functions as a Principal Arterial as identified in the City of Seaside Street Functional Classifications. It is anticipated that US 101 will service all the project traffic.

Vicinity Roadways

The proposed development is expected to impact one (1) vicinity roadway. Table 1 provides a description of that roadway.

Table 1: Vicinity Roadway Descriptions

Roadway						
Name	Jurisdiction	Functional Classification	Speed (MPH)	 Sidewalks	On-Street Parking	Bicycle Facilities
US 101	ODOT	Statewide Scenic Byway	40 MPH	None	Parallel	Class II Bike Lanes

In addition to its highway classification, US 101 functions as a Principal Arterial as identified in the City of Seaside Street Functional Classifications.

Study Intersections

The proposed development is expected to impact one (1) existing vicinity intersection of significance. Table 2 below provides a summarized description of the study intersection.

Table 2: Vicinity Intersection Descriptions

ID	Intersection	Approaches	Traffic Control	Phasing/Stopped Approaches
1	US 101 \& Site Driveway	Three	Stop-Controlled	WB Stop Controlled

A vicinity map displaying the project site, vicinity streets, and the study intersections with their associated lane configurations and control types is shown in Figure 1.

Site Trips

Trip Generation

To estimate the number of trips that are projected to be generated by the housing development, trip rates from the Trip Generation Manual' were used. Specifically, data from land use code 220, Multifamily Housing (Low Rise), was used to estimate the proposed development's trip generation based on the proposed number of dwelling units.

The trip generation calculations show that the proposed development is projected to generate 36 morning peak hour trips, 45 evening peak hour trips, and 518 average weekday trips. The trip generation estimates are summarized in Table 3. Detailed trip generation calculations are attached to this memorandum.

Table 3: Trip Generation Summary

Land Use	ITE Code	Size	AM Peak Hour			PM Peak Hour			Weekday
			In	Out	Total	In	Out	Total	Total
Multifamily Housing (Low-Rise)	220	74 DU	8	28	36	28	17	45	518

Trip Distribution

The project trip distribution was developed based on the geographical location of the project, US residential/employment census data (https://onthemap.ces.census.gov/), preferred route choice, and the existing roadway network facilities. The following trip distribution is projected:

- 60 percent of site trips are expected to travel to and from the north along US 101
- 20 percent of site trips are expected to travel to and from the west along $12^{\text {th }}$ Avenue via US 101
- 15 percent of site trips are expected to travel to and from the south along US 101
- 5 percent of site trips are expected to travel to and from the east along $12^{\text {th }}$ Avenue via US 101 The regional trip distribution and traffic assignment for site trips generated by the proposed development are shown in Figure 2.

[^2]Lane Geometry

TRAFFIC VOLUMES

Trip Distribution \& Assignment
Figure 2
AM \& PM Peak Hour

Traffic Volumes

This section describes the study intersection peak hour traffic volumes under existing conditions (year 2021), the future year 2023 background volumes, and the future year 2023 (opening day) buildout volumes.

Existing Conditions

Since this study is being conducted during the COVID-19 viral pandemic, which has become a public health concern throughout the State of Oregon, collection of current traffic counts is not feasible at this time. Due to the pandemic, traffic volumes have been significantly depressed statewide since March 2020. Additionally, US 101 is identified as a Coastal Destination Route, meaning that summertime traffic volumes are significantly higher than wintertime conditions. Thus, conducting new traffic counts at this time is not advisable. To reflect normal travel conditions, baseline traffic volumes at the study intersection were deduced using two methods:

- Traffic volumes along US 101 were calculated using an ODOT average annual daily traffic (AADT) volume data collected throughout 2018. The count location directly fronts the project site, with no driveways between the it and the site driveway.
- Ingress and egress traffic volumes were calculated using standard trip rates from the Trip Generation Manual ${ }^{2}$. Specifically, data from the following land use codes were employed for the various uses sharing the project driveway:
- TLC Credit Union (Drive-In Bank, 912) - based on square footage of the building;
- Randall Lee's FlooringAmerica (Building Materials and Lumber Store, 812) - based on square footage of the building;
- Seaside Car \& Boat Wash (Self-Service Car Wash, 947) - based on the number of stalls;
- Los Tacos Locos (Fast-Food Restaurant with Drive-Thru, 934) - based on square footage of the building;
- Seaside Family Dentistry (Medical/Dental Office Building, 720) - based on square footage of the building;
- Ticor Title (Small Office, 712) - based on square footage of the building; and
- Dutch Bros Coffee (Coffee-Donut with Drive Thru no Seating, 938) - based on square footage of the building.
- The Automatic Traffic Recorder (ATR) Gearhart \#04-001 at US101; MP 15.90; OREGON COAST HIGHWAY NO. 9; 2.09 miles north of Dellmoor Loop Road was used to develop a seasonal adjustment factor.
- A seasonal adjustment factor (SAF) of 1.1485 was applied to adjust the September count period to the peak month (typically August). The SAF is intended to adjust traffic volumes along ODOT intersections to reflect the $30^{\text {th }}$ highest hour of traffic. The adjustment factor was applied to each intersection turning movement.

[^3]The site uses and the square footage of each use were established using the Clatsop County webmap tax information,(https://delta.co.clatsop.or.us/portal/apps/webappviewer/index.html?id=66f9167f01304850aacc7ad1 a0d3d217). The webmap information is provided as an appendix to this report. A summary of the existing site uses trip generation is provided in Table 4.

Table 4: Existing Site Uses Trip Generation Summary

Tax Lot: Tenant	ITE Land Use: Code	Size	Units	Morning Peak Hour			Evening Peak Hour			ADT
				Enter	Exit	Total	Enter	Exit	Total	
5801: TLC Credit Union	Drive-In Bank: 912	4,600	Square Feet	26	18	44	47	47	94	460
5801: Randall Lee's Flooring America	Building Materials and Lumber Store: 812	3,500	Square Feet	3	2	5	3	4	7	64
5804: Seaside Car \& Boat Wash	Self-Service Car Wash: 947	4	Stalls	16	16	32	11	11	22	432
5804: Los Tacos Locos	Fast-Food Restaurant with Drive-Thru: 934	384	Square Feet	8	7	15	7	6	13	180
5805: Seaside Family Dentistry	Medical/Dental Office Building: 720	2,672	Square Feet	7	2	9	3	8	11	92*
5805: Ticor Title	Small Office: 712	2,659	Square Feet	4	1	5	2	5	7	44
5807: Dutch Bros Coffee	Coffee-Donut with Drive Thru no Seating: 938	351	Square Feet	59	59	118	14	15	29	702
Existing Uses				123	105	228	87	96	183	1,974

* The equations were used for the morning and evening peak hour estimates the the average rate was used for the daily estimate because the equation produces unrealistic estimates.

To adjust for year 2021 baseline conditions from the 2018 counts, a conservative, compounding annual growth rate of 2.00% was applied to each intersection movement. Figure 3 displays the baseline existing conditions traffic volumes for the study intersections during the evening peak hour. The 2018 count data is provided as an appendix to this report.
age 10 of 17

Background Conditions

To provide analysis of the impact of the proposed development on the nearby transportation facilities, an estimate of future traffic volumes is required. Consistent with the growth factors identified in the development of the Existing Conditions baseline volume, an annual compounded growth rate of 2.00% was applied to the 2021 Existing Conditons baseline volumes for future year 2023 conditions. Figure 3 displays the Year 2023 background volumes during the evening peak hour.

Buildout Conditions

Peak hour trips calculated to be generated by the proposed development, as described earlier within the Site Trips section, were added to the Year 2023 background volumes to obtain the expected Year 2023 buildout conditions. Figure 3 displays the Year 2023 background volumes with the additional site trips projected to be generated by the proposed development.

not to scale

Safety Analysis

Crash History Review

Using data obtained from ODOT's Crash Analysis and Reporting Unit, a review was performed of the most recent five years of available crash data at the study intersections (January 2014 through December 2018). The crash data was evaluated based on the number of crashes, the type of collisions, the severity of the collisions, and the resulting crash rate for each intersection. Crash severity is based on injuries sustained by people involved in the crash, and includes five categories:

- PDO - Property Damage Only;
- Injury C - Possible Injury;
- Injury B - Suspected Minor Injury;
- Injury A - Suspected Serious Injury; and
- Fatality

Crash rates provide the ability to compare safety risks at different intersections by accounting for both the number of crashes that have occurred during the study period and the number of vehicles that typically travel through the intersection. Crash rates were calculated under the common assumption that traffic counted during the evening peak hour represents approximately ten percent of annual average daily traffic (AADT) at each intersection.

The study intersection adheres to the crash analysis methodologies within ODOT's APM. According to Exhibit 4-1: Intersection Crash Rates per MEV by Land Type and Traffic Control of the APM, intersections which experience crash rates exceeding their respective $90^{\text {th }}$ percentile crash rates should be "flagged for further analysis" and may be indicative of design deficiencies and therefore require a need for further investigation and possible mitigation. The $90^{\text {th }}$ percentile rate for an unsignalized, three-leg intersection in urban areas is 0.293 CMEV.

Table 5 provides a summary of crash types and rates for the study intersection. All the collisions were classified as "possible injury" (Injury C). Detailed crash reports are included in the technical appendix to this report.

Table 5: Crash Type Summary

Intersection	Crash Type			Total Crashes	PHEV	$\begin{aligned} & \text { Crash } \\ & \text { Rate } \end{aligned}$	$\begin{aligned} & \text { ODOT } \\ & 90^{\text {th }} \% \end{aligned}$
	Rear-End	Sideswipe	Turning				
US 101 \& Site Driveway	1	1	1	3	2,249	0.07	0.293

PHEV = Peak Hour Entering Vehicles.

Based on a review of the most recent five years of available crash data, no significant trends or crash patterns were identified at any of the study intersections that were indicative of safety concerns. Accordingly, no additional safety mitigation is recommended per the crash data analysis.

Warrant Analysis

Preliminary Traffic Signal Warrants

Preliminary traffic signal warrants were examined for the unsignalized site access intersection. Methodologies were based on the Manual on Uniform Traffic Control Devices (MUTCD), published by the Federal Highway Administration in 2009. Warrant 1, Eight-Hour Vehicular Volumes, was evaluated based on the common assumption that traffic counted during the evening peak hour represents 10 percent of the average daily traffic (ADT) and that the $8^{\text {th }}$ highest hour is 5.65 percent of the daily volume. Detailed analysis worksheets can be found in an appendix to this report.

The preliminary traffic signal analysis determined that signal warrants are not projected to be met at the study intersection under year 2023 Buildout Conditions.

Left- \& Right-Turn Lane Warrants

Left-turn lane and right-turn lane warrants were not examined for the site access intersection along US 101 as there are currently existing turn lanes accessing the site.

Operational Analysis

Capacity and delay analyses were conducted for the study intersection per the unsignalized intersection analysis methodologies in the Highway Capacity Manual ${ }^{3}$ (HCM). Calculations for the intersection are performed using Synchro 10.3.122.0 software. Intersections are generally evaluated based on the average control delay experienced by vehicles and are assigned a grade according to their operation. The level of service (LOS) of an intersection can range from LOS A, which indicates very little, or no delay experienced by vehicles, to LOS F, which indicates a high degree of congestion and delay. The volume-to-capacity $(\mathrm{v} / \mathrm{c})$ ratio is a measure that compares the traffic volumes (demand) against the available capacity of an intersection.

Performance Standards

In accordance with the ODOT Oregon Highway Plan (1999), statewide routes outside an MPO and STA with a roadway speed of 40 mph have an intersection v / c ratio target not to exceed 0.85 .

[^4]Page 14 of 17

Delay \& Capacity Analysis

The v / c, delay, and LOS results of the capacity analysis are shown in Table 6 for the morning and evening peak hours. Detailed calculations as well as tables showing the relationship between delay and LOS are included in the appendix to this report.

Table 6: Intersection Capacity Analysis Summary

Scenario	Morning Peak Hour			Evening Peak Hour		
	V/C	LOS	Delay (s)	V/C	LOS	Delay (s)
Existing Conditions	0.29	D	32	0.24	D	31
2023 Background Conditions	0.32	E	35	0.26	D	33
2023 Buildout Conditions	0.41	E	39	0.32	E	37

BOLDED text indicates intersection operation above jurisdictional standards.

Based on the results of the operational and capacity analysis, all study intersections are currently operating acceptably per ODOT standards and are projected to continue operating acceptably in Year 2023, both with and without the addition of project traffic.

Queuing Analysis

An analysis of projected queuing was conducted for the study intersection. To determine the expected queuing which may form at critical study area movements, a queuing analysis was conducted based on the results of a Synchro/SimTraffic simulation (version 10.3.122.0), with the reported values representing $95^{\text {th }}$ percentile queue lengths. The $95^{\text {th }}$ percentile queue is a statistical measurement which indicates there is a 5 percent chance that the queue may exceed this length during the analysis period; however, given this is a probability, the $95^{\text {th }}$ percentile queue length may theoretically never be met or observed in the field. In order to provide an analysis for a worst-case scenario, the analysis summarized in Table 7 is based on the peak 15 -minute periods of the morning and evening peak hours.

Table 7: Queuing Analysis Summary - Buildout Year 2023

Movement	Available Storage (ft)	Background Year 2023 95th	Bercentile Queue 95 th Percentile Queue
US 101 - SBL	400	$100 / 75$	$125 / 100$
Site Access - WBL	115	$75 / 75$	$100 / 100$
Site Access - WBR	115	$100 / 100$	$275 / 150$

$B O L D E D$ text indicates queue length exceeding storage capacity.

A reported queue lengths were rounded up to the nearest twenty five feet, or the approximate length of one vehicle.

On US 101, the available storage in the southbound left-turn lane can easily accommodate the additional traffic generated by the proposed development. The left-turn movement will not affect the adjacent through travel lane.

Page 15 of 17

For the westbound approach, the $95^{\text {th }}$ percentile queue length is shown to extend past the turn pockets during the morning and evening peak hours under the Buildout Year 2023 scenario. However, the lane extends farther into the development which has enough storage to accommodate the estimated $95^{\text {th }}$ percentile queue while maintaining gaps for individual driveway access. Traffic entering the shared driveway will continue to have access to all destinations served by the driveway. Internal queues that could affect the highway operations are unlikely to form.

It should be reiterated; however, that the $95^{\text {th }}$ percentile queue accounts for 5 percent of possible queuing conditions for only the peak 15-minute period of rush hour traffic. Under all other traffic conditions, the outbound driveway queue is not expected to extend past the Dutch Bros driveway, and will not prevent vehicles from safely and expeditiously turning left and right out of the driveway and onto US 101. Safe driveway ingress and egress is demonstrated to occur during the highest peak hour of traffic under the expected typical queuing conditions. Accordingly, no mitigation pertaining to queuing is necessary or recommended.

Conclusions

Finding of the analysis include:

- No significant trends or crash patterns were identified at any of the study intersection that were indicative of safety concerns. No additional safety mitigation is recommended per the crash data analysis.
- The preliminary traffic signal analysis determined that signal warrants are not projected to be met at the site access driveway.
- All study intersections are currently operating acceptably per ODOT standards and are projected to continue operating acceptably in Background Year 2023, both with and without the addition of project traffic.
- Queueing analysis of the buildout conditions shows that existing turn lanes on the highway can accommodate the addition demand generated by the proposed development. Although the queues exiting the site can be longer during the morning and evening peak hours, they are not expected to impede internal circulation or create queues of entering vehicles that could affect the highway operations.

Appendix

6/17/2021

Appendix A

Traffic Counts

Milepoint 19.89

Location:	OR213; MP 8.90; CASCADE HIGHWAY SOUTH NO. $160 ; 0.94$ mile south of S. Spangler Road	Site Name:	Mulino (03-020)

HISTORICAL TRAFFIC DATA

		Percent of ADT				
Year	ADT	$\begin{aligned} & \text { Max } \\ & \text { Day } \end{aligned}$	Max Hour	10TH Hour	20TH Hour	30TH Hour
2006	***	***	***	***	***	***
2007	***	***	***	***	***	***
2008	***	***	***	***	***	***
2009	***	***	***	***	***	***
2010	13007	119	10.1	9.6	9.6	9.5
2011	12962	124	10.2	9.7	9.6	9.5
2012	12721	122	10.1	9.8	9.6	9.5
2013	13132	122	9.9	9.6	9.5	9.5
2014	13552	126	10.0	9.7	9.5	9.4
2015	14402	122	9.9	9.4	9.2	9.2

2015 TRAFFIC DATA

	Average Weekday Traffic	Percent of ADT	Average Daily Traffic	Percent of ADT
January	13935	97	12989	90
February	14482	101	13709	95
March	14767	103	14003	97
April	15051	105	14386	100
May	14917	104	14464	100
June	15632	109	15162	105
July	15736	109	15170	105
August	15535	108	14983	104
September	15266	106	14907	104
October	15583	108	14781	103
November	15285	106	14247	99
December	14993	104	14028	97

For Vehicle Classification data near this ATR, please go to the following web page:
https://gis.odot.state.or.us/TransGIS/

| Location: | US101; MP 15.90; OREGON COAST HIGHWAY NO. 9; 2.09 miles north of Dellmoor
 Loop Road | Site Name: | Gearhart (04-001) |
| :--- | :--- | :--- | :--- | :--- |
| | Installed: | October, 1956 | |

HISTORICAL TRAFFIC DATA

		Percent of ADT					
		Max Day	Max Hour	10TH Hour	20TH Hour	30TH Hour	
2006	13797	146	12.8	12.3	11.9	11.8	
2007	14019	145	12.5	12.1	11.9	11.7	
2008	13486	153	14.3	12.2	11.8	11.7	
2009	13797	146	12.8	12.4	12.1	12.0	
2010	13635	149	12.7	12.4	12.1	12.0	
2011	13182	149	14.2	12.5	12.4	12.2	
2012	13158	157	13.6	12.9	12.5	12.4	
2013	13409	150	13.5	12.7	12.4	12.2	
2014	13825	150	13.1	12.7	12.5	12.2	
2015	14702	142	12.2	11.7	11.5	11.4	

2015 TRAFFIC DATA

	Average Weekday Traffic	Percent of ADT	Average Daily Traffic	Percent of ADT
January	11733	80	11556	79
February	12783	87	13195	90
March	13793	94	13939	95
April	14454	98	14660	100
May	14387	98	14719	100
June	16153	110	16722	114
July	18237	124	18236	124
August	18670	127	18602	127
September	15989	109	16401	112
October	14196	97	14026	95
November	12845	87	12593	86
December	12689	86	11776	80

For Vehicle Classification data near this ATR, please go to the following web page:
https://gis.odot.state.or.us/TransGIS/

Location:	OR213; MP 8.90; CASCADE HIGHWAY SOUTH NO. 160; 0.94 mile south of S. Spangler Road	Site Name:	Mulino (03-020)

HISTORICAL TRAFFIC DATA

		Percent of AADT				
Year	AADT	Max Day	Max Hour	10TH Hour	20TH Hour	30TH Hour
2007	***	***	***	***	***	***
2008	***	***	***	***	***	***
2009	***	***	***	***	***	***
2010	13007	119	10.1	9.6	9.6	9.5
2011	12962	124	10.2	9.7	9.6	9.5
2012	12721	122	10.1	9.8	9.6	9.5
2013	13132	122	9.9	9.6	9.5	9.5
2014	13552	126	10.0	9.7	9.5	9.4
2015	14402	122	9.9	9.4	9.2	9.2
2016	15132	125	9.9	9.4	9.3	9.2

2016 TRAFFIC DATA

	Average Weekday Traffic	Percent of AADT	Average Daily Traffic	Percent of AADT
January	14541	96	13352	88
February	15434	102	14465	96
March	15545	103	14681	97
April	16232	107	15579	103
May	16360	108	15657	103
June	16632	110	16048	106
July	16662	110	16229	107
August	16835	111	16304	108
September	16299	108	15655	103
October	16184	107	15183	100
November	16094	106	14918	99
December	14259	94	13516	89

For Vehicle Classification data near your project, please go to the following web page:
https://gis.odot.state.or.us/TransGIS/

Location:	US101; MP 15.90; OREGON COAST HIGHWAY NO. 9; 2.09 miles north of Dellmoor Loop Road	Site Name:	Gearhart (04-001)
	Installed:	October, 1956	

HISTORICAL TRAFFIC DATA

		Percent of AADT					
		Max Yay	Max Hour	$\mathbf{1 0 T H}$ Hour	20TH Hour	30TH Hour	
2007	14019	145	12.5	12.1	11.9	11.7	
2008	13486	153	14.3	12.2	11.8	11.7	
2009	13797	146	12.8	12.4	12.1	12.0	
2010	13635	149	12.7	12.4	12.1	12.0	
2011	13182	149	14.2	12.5	12.4	12.2	
2012	13158	157	13.6	12.9	12.5	12.4	
2013	13409	150	13.5	12.7	12.4	12.2	
2014	13825	150	13.1	12.7	12.5	12.2	
2015	14702	142	12.2	11.7	11.5	11.4	
2016	15243	144	12.0	11.7	11.6	11.4	

2016 TRAFFIC DATA

	Average Weekday Traffic	Percent of AADT	Average Daily Traffic	Percent of AADT
January	12294	81	12019	79
February	13498	89	13654	90
March	14098	92	13945	91
April	15260	100	15665	103
May	15388	101	15788	104
June	17061	112	17334	114
July	18573	122	18689	123
August	19210	126	19391	127
September	16856	111	17079	112
October	14311	94	13729	90
November	13445	88	13286	87
December	13014	85	12337	81

For Vehicle Classification data near your project, please go to the following web page:
https://gis.odot.state.or.us/TransGIS/

Location:	US101; MP 15.90; OREGON COAST HIGHWAY NO. 9; 2.09 miles north of Dellmoor Loop Road	Site Name:	Gearhart (04-001)

HISTORICAL TRAFFIC DATA

		Percent of AADT					
		Max Year	Max Hour	10TH Hour	20TH Hour	30TH Hour	
2008	13486	153	14.3	12.2	11.8	11.7	
2009	13797	146	12.8	12.4	12.1	12.0	
2010	13635	149	12.7	12.4	12.1	12.0	
2011	13182	149	14.2	12.5	12.4	12.2	
2012	13158	157	13.6	12.9	12.5	12.4	
2013	13409	150	13.5	12.7	12.4	12.2	
2014	13825	150	13.1	12.7	12.5	12.2	
2015	14702	142	12.2	11.7	11.5	11.4	
2016	15243	144	12.0	11.7	11.6	11.4	
2017	15717	142	12.2	11.6	11.3	11.2	

2017 TRAFFIC DATA

	Average Weekday Traffic	Percent of AADT	Average Daily Traffic	Percent of AADT
January	12411	79	12121	77
February	13228	84	13360	85
March	14256	91	14298	91
April	15928	101	15843	101
May	16111	103	16452	105
June	17482	111	17531	112
July	19500	124	19459	124
August	19906	127	19848	126
September	17599	112	17842	114
October	15308	97	15210	97
November	13576	86	13582	86
December	13485	86	13060	83

For Vehicle Classification data near your project, please go to the following web page: https://www.oregon.gov/ODOT/Data /Documents/TVT 2017.xlsx

Location:	US101; MP 3.79; OREGON COAST HIGHWAY NO. 9; 0.01 mile north of Lower Columbia River Highway No. 92 (US30)	Site Name:	Astoria Bridge (04-004)
	Installed:	September, 1995	

HISTORICAL TRAFFIC DATA

		Percent of AADT					
Year	AADT	Max Day	Max Hour	10TH Hour	20TH Hour	30TH Hour	
2008	6761	175	17.3	15.8	15.0	14.3	
2009	7207	191	17.2	15.9	15.0	14.6	
2010	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	
2011	6912	174	18.9	16.0	15.5	15.0	
2012	6878	168	16.8	15.2	14.7	14.5	
2013	7171	180	16.7	15.4	14.4	14.1	
2014	7488	169	17.3	14.9	14.5	14.0	
2015	8158	178	24.0	15.3	14.5	13.9	
2016	8506	164	22.9	15.4	14.5	13.7	
2017	8534	162	19.7	14.8	14.2	13.9	

2017 TRAFFIC DATA

	Average Weekday Traffic	Percent of AADT	Average Daily Traffic	Percent of AADT
January	6236	73	6127	72
February	6925	81	7156	84
March	7133	84	7363	86
April	7929	93	8521	100
May	8312	97	8837	104
June	9053	106	9382	110
July	10445	122	10830	127
August	11103	130	11601	136
September	10400	122	10500	123
October	7500	88	7800	91
November	7110	83	7286	85
December	7046	83	7000	82

For Vehicle Classification data near your project, please go to the following web page:
https://www.oregon.gov/ODOT/Data /Documents/TVT 2017.xlsx

Location:	US101; MP 15.90; OREGON COAST HIGHWAY NO. 9; 2.09 miles north of Dellmoor Loop Road	Site Name:	Gearhart (04-001)
	Installed:	October, 1956	

HISTORICAL TRAFFIC DATA

		Percent of AADT					
Year	AADT	Max Day	Max Hour	$\mathbf{1 0 T H}$ Hour	20TH Hour	30TH Hour	
2009	13797	146	12.8	12.4	12.1	12.0	
2010	13635	149	12.7	12.4	12.1	12.0	
2011	13182	149	14.2	12.5	12.4	12.2	
2012	13158	157	13.6	12.9	12.5	12.4	
2013	13409	150	13.5	12.7	12.4	12.2	
2014	13825	150	13.1	12.7	12.5	12.2	
2015	14702	142	12.2	11.7	11.5	11.4	
2016	15243	144	12.0	11.7	11.6	11.4	
2017	15717	142	12.2	11.6	11.3	11.2	
2018	16204	140	12.1	11.4	11.2	11.1	

2018 TRAFFIC DATA

	Average Weekday Traffic	Percent of AADT	Average Daily Traffic	Percent of AADT
January	12958	80	12877	79
February	13643	84	13703	85
March	15246	94	15274	94
April	16227	100	15770	97
May	16446	101	16900	104
June	18362	113	18304	113
July	20029	124	20124	124
August	20337	126	20265	125
September	17776	110	17767	110
October	15605	96	15628	96
November	14462	89	14388	89
December	13642	84	13449	83

For Vehicle Classification data near your project, please go to the following web page: https://www.oregon.gov/ODOT/Data /Documents/TVT 2018.xlsx

Location:	US101; MP 3.79; OREGON COAST HIGHWAY NO. 9; 0.01 mile north of Lower Columbia River Highway No. 92 (US30)	Site Name:	Astoria Bridge (04-004)
	Installed:	September, 1995	

HISTORICAL TRAFFIC DATA

		Percent of AADT					
Year	AADT	Max Day	Max Hour	10TH Hour	20TH Hour	30TH Hour	
2009	7207	191	17.2	15.9	15.0	14.6	
2010	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	
2011	6912	174	18.9	16.0	15.5	15.0	
2012	6878	168	16.8	15.2	14.7	14.5	
2013	7171	180	16.7	15.4	14.4	14.1	
2014	7488	169	17.3	14.9	14.5	14.0	
2015	8158	178	24.0	15.3	14.5	13.9	
2016	8506	164	22.9	15.4	14.5	13.7	
2017	8534	162	19.7	14.8	14.2	13.9	
2018	9017	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	

2018 TRAFFIC DATA

	Average Weekday Traffic	Percent of AADT	Average Daily Traffic	Percent of AADT
January	6829	76	6890	76
February	7100	79	7300	81
March	7973	88	8200	91
April	8800	98	9100	101
May	9000	100	9400	104
June	9715	108	10110	112
July	11326	126	11728	130
August	11228	125	11691	130
September	9905	110	10151	113
October	8502	94	8614	96
November	7500	83	7600	84
December	7300	81	7414	82

For Vehicle Classification data near your project, please go to the following web page:
https://www.oregon.gov/ODOT/Data /Documents/TVT_2018.xlsx

Summary of Trends at Automatic Traffic Recorder Stations 2019												
Location	US101; MP 15.90; OREGON COAST HIGHWAY NO. 9; 2.09 miles north of Dellmoor Loop Rd						Site Name Gearhart (04-001) Installed October, 1956					
Year	An OR Average Daily Traffic (AADT)	HISTORICAL ANNUAL TRAFFIC DATA					2019	SEASO	L T	TRAFFIC DATA		
		Critical Values as percent of Annual Average Daily Traffic (AADT)						Weekday		Daily		
							Average	\% AADT	Average	\% AADT		
		Max Day	Max Hour	10th Hour	20th	30th Hour		January	13777 13406	83 81	13667 13333	83 81
2010	13635	149	12.7	12.4	12.1	12.0	March	15629	95	15839	96	
2011	13182	149	14.2	12.5	12.4	12.2	April	16386	99	16393	99	
2012	13158	157	13.6	12.9	12.5	12.4	May	16917	102	17277	105	
2013	13409	150	13.5	12.7	12.4	12.2	June	18517	112	18600	113	
2014	13825	150	13.1	12.7	12.5	12.2	July	19968	121	20082	122	
2015	14702	142	12.2	11.7	11.5	11.4	August	20535	124	20573	125	
2016	15243	144	12.0	11.7	11.6	11.4	September	18071	109	18034	109	
2017	15717	142	12.2	11.6	11.3	11.2	October	16120	98	16063	97	
2018	16204	140	12.1	11.4	11.2	11.1	November	14858	90	14735	89	
2019	16516	140	11.7	11.3	11.1	11.0	December	14012	85	13599	82	

Appendix B

Site Plan \&

Trip Generation Calculations

$\frac{\text { VICINITY MAP }}{\text { NoSCALE }}$

$\frac{\text { PROJECTMAP }}{\text { NOSCAE }}$

TRIP GENERATION CALCULATIONS

Land Use: Multifamily Housing (Low-Rise)
Land Use Code: 220
Setting/Location General Urban/Suburban
Variable: Dwelling Units
Variable Value: 74

AM PEAK HOUR
Trip Equation: $\operatorname{Ln}(\mathrm{T})=0.95 \operatorname{Ln}(\mathrm{X})-0.51$

	Enter	Exit	Total
Directional Distribution	23%	77%	
Trip Ends	$\mathbf{8}$	$\mathbf{2 8}$	$\mathbf{3 6}$

WEEKDAY
Trip Equation: T=7.56(X)-40.86

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 5 9}$	$\mathbf{2 5 9}$	$\mathbf{5 1 8}$

PM PEAK HOUR

Trip Equation: $\operatorname{Ln}(\mathrm{T})=0.89 \mathrm{Ln}(\mathrm{X})-0.02$

	Enter	Exit	Total
Directional Distribution	63%	37%	
Trip Ends	$\mathbf{2 8}$	$\mathbf{1 7}$	$\mathbf{4 5}$

SATURDAY
Trip Equation: T=14.01(X)-521.69

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 5 8}$	$\mathbf{2 5 8}$	$\mathbf{5 1 6}$

TRIP GENERATION CALCULATIONS

Land Use: Small Office Building

Land Use Code: 712
Setting/Location General Urban/Suburban
Variable: 1000 Sq Ft Gross Floor Area
Variable Value: 2.659

AM PEAK HOUR
Trip Rate: 1.92

	Enter	Exit	Total
Directional Distribution	83%	18%	
Trip Ends	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{5}$

WEEKDAY
Trip Rate: 16.19

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 2}$	$\mathbf{2 2}$	$\mathbf{4 4}$

PM PEAK HOUR
Trip Rate: 2.45

	Enter	Exit	Total
Directional Distribution	32%	68%	
Trip Ends	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{7}$

SATURDAY
Trip Rate:

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

TRIP GENERATION CALCULATIONS

Land Use: Medical-Dental Office Building
Land Use Code: 720
Setting/Location General Urban/Suburban
Variable: 1,000 Sq Ft Gross Floor Area
Variable Quantity: 2.672

AM PEAK HOUR

Trip Equation: $\operatorname{Ln}(\mathrm{T})=0.89 \mathrm{Ln}(\mathrm{X})+1.31$

	Enter	Exit	Total
Directional Distribution	78%	22%	
Trip Ends	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{9}$

WEEKDAY

Trip Equation: $\mathrm{T}=38.42(\mathrm{X})-87.62$

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{1 6}$

PM PEAK HOUR
Trip Equation: $\mathrm{T}=3.39(\mathrm{X})+2.02$

	Enter	Exit	Total
Directional Distribution	28%	72%	
Trip Ends	$\mathbf{3}$	$\mathbf{8}$	$\mathbf{1 1}$

SATURDAY
Trip Rate: 8.57

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 1}$	$\mathbf{1 1}$	$\mathbf{2 2}$

The average rate of 34.8 trips per KSF yields a daily estimate of 92 trips, which is more releastic than the estimate provided using the equation.

TRIP GENERATION CALCULATIONS

Land Use: Building Materials and Lumber Store
Land Use Code: 812
Setting/Location: General Urban/Suburban
Variable: 1,000 Sq. Ft. Gross Floor Area
Variable Value: 3.5

AM PEAK HOUR

Trip Rate: 1.57

	Enter	Exit	Total
Directional Distribution	63%	37%	
Trip Ends	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{5}$

WEEKDAY
Trip Rate: 18.05

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{3 2}$	$\mathbf{3 2}$	$\mathbf{6 4}$

PM PEAK HOUR
Trip Rate: 2.06

	Enter	Exit	Total
Directional Distribution	47%	53%	
Trip Ends	$\mathbf{3}$	$\mathbf{4}$	7

SATURDAY
Trip Rate: 51.61

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{9 0}$	$\mathbf{9 0}$	$\mathbf{1 8 0}$

TRIP GENERATION CALCULATIONS

Land Use: Drive-in Bank
Land Use Code: 912
Setting/Location: General Urban/Suburban
Variable: 1000 Sq Ft Gross Floor Area
Variable Quantity: 4.6

AM PEAK HOUR

Trip Rate: 9.5

	Enter	Exit	Total
Directional Distribution	58%	42%	
Trip Ends	$\mathbf{2 6}$	$\mathbf{1 8}$	$\mathbf{4 4}$

WEEKDAY
Trip Rate: 100.03

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 3 0}$	$\mathbf{2 3 0}$	$\mathbf{4 6 0}$

PM PEAK HOUR
Trip Rate: 20.45

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{4 7}$	$\mathbf{4 7}$	$\mathbf{9 4}$

SATURDAY

Trip Rate: 86.48

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 9 9}$	$\mathbf{1 9 9}$	$\mathbf{3 9 8}$

TRIP GENERATION CALCULATIONS

Land Use: Fast-Food Restaurant with a Drive-Thru Window Land Use Code: 934
Setting/Location: General Urban/Suburban
Variable: 1,000 Sq. Ft. GFA
Variable Value: 0.384

AM PEAK HOUR

Trip Rate: 40.19

	Enter	Exit	Total
Directional Distribution	51%	49%	
Trip Ends	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1 5}$

WEEKDAY
Trip Rate: 470.95

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{9 0}$	$\mathbf{9 0}$	$\mathbf{1 8 0}$

PM PEAK HOUR

Trip Rate: 32.67

	Enter	Exit	Total
Directional Distribution	52%	48%	
Trip Ends	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{1 3}$

SATURDAY

Trip Rate: 616.12

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 1 8}$	$\mathbf{1 1 8}$	$\mathbf{2 3 6}$

TRIP GENERATION CALCULATIONS

Land Use: Coffee/Donut Shop with Drive-Through Window and No Indoor Seating
Land Use Code: 938
Setting/Location: General Urban/Suburban
Variable: 1000 Sq Ft Gross Floor Area
Variable Quantity: 0.351

AM PEAK HOUR

Trip Rate: 337.04

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{5 9}$	$\mathbf{5 9}$	$\mathbf{1 1 8}$

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{2 9}$

WEEKDAY

Trip Rate: 2000.00

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{3 5 1}$	$\mathbf{3 5 1}$	$\mathbf{7 0 2}$

TRIP GENERATION CALCULATIONS

Land Use: Self-Service Car Wash
Land Use Code: 947
Setting/Location: General Urban/Suburban
Variable: Wash Stalls
Variable Quantity: 4

AM PEAK HOUR OF GENERATOR

Trip Rate: 8.00

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 6}$	$\mathbf{1 6}$	$\mathbf{3 2}$

PM PEAK HOUR
Trip Rate: 5.54

	Enter	Exit	Total
Directional Distribution	51%	49%	
Trip Ends	$\mathbf{1 1}$	$\mathbf{1 1}$	$\mathbf{2 2}$

WEEKDAY

Trip Rate: 108.00

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 1 6}$	$\mathbf{2 1 6}$	$\mathbf{4 3 2}$

Appendix C

ODOT Crash Data Reports

Appendix D

Signal Warrant Worksheets

Traffic Signal Warrant Analysis

Traffic Signal Warrant Analysis

Appendix E

LOS Definition

LEVEL OF SERVICE

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C . Urban streets and signalized intersections are typically designed for level of service D . Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.

Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.

Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.

Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.

Level of service E: Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.

Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-20$
C	$20-35$
D	$35-55$
E	$55-80$
F	>80

LEVEL OF SERVICE CRITERIA
FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

Appendix F

Capacity Analysis Worksheets

[^5]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Major/Minor	Minor1	Major1	Major2		
Conflicting Flow All	2376	1162	0	0	1215
\quad Stage 1	1162	-	-	-	-
\quad Stage 2	1214	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	28.6	0	0.9
HCM LOS	D		

Minor Lane/Major Mvmt	NBT	NBRWBLn1WBLn2	SBL	SBT	
Capacity (veh/h)	-	-178	237	560	-
HCM Lane V/C Ratio	-	-0.256	0.289	0.144	-
HCM Control Delay (s)	-	-32.1	26.2	12.5	-
HCM Lane LOS	-	-	D	D	B
HCM 95th \%tile Q(veh)	-	-	1	1.2	0.5

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						
Int Delay, s/veh	1.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	i	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1}$	个
Traffic Vol, veh/h	44	66	1112	51	77	1009
Future Vol, veh/h	44	66	1112	51	77	1009
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	65	-	-	45	150	-
Veh in Median Storage, \#	2	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	6	6	6	6
Mvmt Flow	48	72	1209	55	84	1097

Major/Minor	Minor1	Major1	Major2		
Conflicting Flow All	2474	1209	0	0	1264
\quad Stage 1	1209	-	-	-	-
\quad Stage 2	1265	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	31.2	0	0.9
HCM LOS	D		

Minor Lane/Major Mvmt	NBT	NBRWBLn1WBLn2	SBL	SBT	
Capacity (veh/h)	-	-	166	223	537

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						

[^6]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

HCM LOS D

Minor Lane/Major Mvmt	NBT	NBRWBLn1WBLn2	SBL	SBT	
Capacity (veh/h)	-	-	164	223	535

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						

[^7]
Appendix G

Queuing Analysis Worksheets

Intersection: 1: US 101 \& Site Access

Movement	WB	WB	NB	NB	SB
Directions Served	L	R	T	R	L
Maximum Queue (ft)	80	132	84	59	102
Average Queue (ft)	29	39	34	8	38
95th Queue (ft)	64	97	88	37	82
Link Distance (ft)		337			
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	65			45	150
Storage Blk Time (\%)	5	3	2	0	0
Queuing Penalty (veh)	4	1	1	1	1

Intersection: 1: US 101 \& Site Access

Movement	WB	WB	NB	NB	SB
Directions Served	L	R	T	R	L
Maximum Queue (ft)	67	124	89	43	73
Average Queue (ft)	25	34	25	3	24
95th Queue (ft)	56	79	73	24	58
Link Distance (ft)		338			
Upstream Blk Time (\%)			0		
Queuing Penalty (veh)			0		
Storage Bay Dist (ft)	65			45	150
Storage Blk Time (\%)	1	2	1	0	
Queuing Penalty (veh)	0	1	0	0	

Intersection: 1: US 101 \& Site Access

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	T	R	L	T
Maximum Queue (ft)	90	285	68	62	140	96
Average Queue (ft)	56	100	6	6	52	3
95th Queue (ft)	100	272	34	33	107	49
Link Distance (ft)		338	152			637
Upstream Blk Time (\%)		4				
Queuing Penalty (veh)		0				
Storage Bay Dist (ft)	65			45	150	
Storage Blk Time (\%)	38	12	0	0	1	0
Queuing Penalty (veh)	32	7	0	0	7	0

Intersection: 1: US 101 \& Site Access

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	T	R	L	T
Maximum Queue (ft)	88	162	67	66	119	51
Average Queue (ft)	40	46	11	6	41	3
95th Queue (ft)	83	129	46	33	93	51
Link Distance (ft)		339	117			637
Upstream Blk Time (\%)						
Queuing Penalty (veh)				45	150	
Storage Bay Dist (ft)	65					
Storage Blk Time (\%)	17	2	0	0	0	
Queuing Penalty (veh)	12	1	0	0	5	

DATE: June 8, 2021

TO: Karen Strauss, PE
Development Review Coordinator

FROM: Arielle Ferber, PE
Traffic Analysis Engineer

SUBJECT: Cross Creek Multifamily Housing (Seaside, OR) - Outright Use
TIA Review Comments

ODOT Region 2 Traffic has completed our review of the submitted traffic impact analysis (dated April 9, 2021) to address traffic impacts due to development south of the Oregon Coast Highway No. 9 (US 101) at $24^{\text {th }}$ Avenue intersection in the city of Seaside, with respect to consistency and compliance with ODOT's Analysis Procedures Manual, Version 2 (APM). The APM was most recently updated in October 2020. The current version is published online at: http://www.oregon.gov/ODOT/TD/TP/Pages/APM.aspx. As a result, we submit the following comments for the City's consideration:

Analysis items to note:

- Region Traffic assumes the land use and density cited in the report is consistent with the City's code.

Analysis items to be addressed:

1. Our review identified multiple trip generation errors of the existing site uses which has underestimated the existing site uses trip generation. Trip generation should be modified to reflect the appropriate method of trip generation.

- Land Use Code (LUC) 812 (Building Materials and Lumber Store) - 6,500 sf was listed in Table 4, however, the AM and PM peak hour and daily trip generations were developed using a smaller square footage of 3,500 sf. This change will increase trips by five in the $A M$, six in the PM, and 53 in the daily.
- LUC 720 (Medical/Dental Office Building) - The fitted curve equation method should instead be utilized for both AM and PM trip generation. This change will increase trips by two in the AM and PM.
- LUC 938 (Coffee-Donut with Drive Thru no Seating) - The PM peak hour entering and exiting trips should be 14 and 15 , respectively.

2. The study does not discuss calculation of nor application of a seasonal factor. Although general information regarding ATR \#04-001 (Gearhart) was provided in the Appendix there are no seasonal factor calculations nor discussion within the report of applying a seasonal factor.
3. The study cites use of a historical 2019 count, however, the count provided in the Appendix has a count date of September 2018. Development of the existing conditions traffic volumes should apply the appropriate years of growth (three vs. two). The accompanying figure, analysis, and discussion should be updated as appropriate.
4. A peak hour factor (PHF) of 0.92 was utilized for the US 101 at Site Driveway intersection for the current year analysis. While the PHF identified by the actual count data (0.95) should be used for the existing conditions (APM, Section 5.8.2) use of a 0.92 PHF, which correlates to the default PHF for major arterial roadways (APM, Section 5.8.2) is more conservative and therefore may be used.
5. The analysis assumed a heavy vehicle percentage of 2% for all approaches for all peak hours studied. However, per the ODOT 2019 Traffic Volumes and Vehicle Classification database this section of US 101 experienced approximately 6% heavy vehicles.
6. Typically queue analysis should be conducted for the no build conditions in addition to the build conditions for comparison purposes to determine the effect the development will have on queuing at the study area intersection.
7. The preliminary traffic signal warrant analysis includes a note that minor street right-turning traffic volumes were reduced by 25%. Per Section 12.4.1 of the APM only minor-street right-turning traffic which exceeds 85% of the capacity of the exclusive right-turn lane should be included in the preliminary traffic signal warrant analysis, therefore, none of the westbound right-turning traffic should be included. This will not have an effect on the results of the analysis.
8. Figure 3 , discussed in the study as displaying the existing, 2023 background, and 2023 buildout traffic volumes appears to have not been included in the study.
9. The Appendix is missing the Synchro reports for the existing and 2023 background conditions.
10. Typographical errors

- Table 4 lists 2,781 sf as the size for LUC 947 (Self-Service Car Wash), however, it appears that this value should be four (stalls) to correlate to the unit used to develop the trip generation.

Proposed mitigation comments:
11. ODOT maintains jurisdiction of the Oregon Coast Highway No. 9 (US 101) and ODOT approval shall be required for all proposed mitigation measures to this facility.
12. No mitigation measures have been proposed, however, as additional information has been requested Region 2 Traffic will comment on the proposed mitigation following resubmittal.

Thank you for the opportunity to review this traffic impact analysis. As the analysis software files were not provided, Region 2 Traffic has only reviewed the submitted report. As the above comments request additional information, we look forward to a second round of review. If there are any questions regarding these comments, please contact me at (503) 986-2857 or Arielle.Ferber@ODOT.state.or.us

Memorandum

To: Steve Olstedt, Ryan Osburn

Copy: Adam Dailey, A.M. Engineering
From: Nick Mesler
Date: July 16, 2021
Subject: Cross Creek Multifamily Development - Pedestrian Safety Plan

This memorandum serves to identify potential safety improvement options for the proposed Cross Creek Multifamily development at the existing site access driveway along US 101 (N Roosevelt Drive). The safety improvement options described further in this memorandum was precipitated by concerns raised by the Seaside Planning Commission. In order to address these concerns, a Pedestrian Safety Plan was prepared to create safer crossing conditions across the existing site access driveway for all roadway users, with a specific focus on pedestrians. The following sections will describe the existing safety conditions at the site access driveway, identify changes to pedestrian and vehicular activity at the project site, and propose safety options that will create an overall safer environment for all modes of transportation, with a focus on pedestrians.

Pedestrian Safety Environment

Crash History Review

Using data obtained from ODOT's Crash Analysis and Reporting Unit, a review was performed of the most recent five years of available crash data at the study intersections (January 2015 through December 2019). The crash data was evaluated based on the number of crashes, the type of collisions, and the severity of the collisions. Crash severity is based on injuries sustained by people involved in the crash, and includes five categories:

- PDO - Property Damage Only;
- Injury C - Possible Injury;
- Injury B - Suspected Minor Injury;

Table 1 provides a summary of crash types and severities for the subject intersection. A detailed crash report at the project access driveway is provided as an attachment.

Table 1: Crash Type and Severity Summary

Intersection at US 101 \& Site Driveway	Crash Type				Total
Count	Sideswipe	Rear-End	Pedestrian	Turning	
Severity	PDO / C	C	1	1	5

The collision identified to involve a pedestrian occurred when a westbound right-turning vehicle onto US 101 struck a pedestrian reportedly crossing the northern leg of the intersection from the west to the east corner of the intersection. The crash report identified that the driver of the vehicle failed to avoid the pedestrian. The collision was reported to have occurred under favorable weather and roadway conditions. It should be noted that this location is not an intended roadway crossing location.

Site Conditions

The existing site has a range of uses that are primarily auto-centric, including a drive-thru bank, drive-thru coffee, drive-thru fast-food restaurant, and car wash. The project development intends to construct 74 multifamily units with the potential to increase pedestrian activity throughout the local roadway system. In combination with the vehicular traffic experienced at the site driveway, it is anticipated that pedestrian/vehicle conflicts may occur at the intersection.

The existing site property has a sidewalk fronting US 101, with a continuation south of the site driveway. Sidewalks are not common along the majority of US 101 outside of the Seaside business district. It is anticipated that the majority of pedestrian activity will be to and from the south of the multifamily residential development to the city center. Pedestrian conditions from the project site to the sidewalk network south of $12^{\text {th }}$ Avenue is provided by a mix of sidewalk and unimproved shoulder paths.

The existing pedestrian crossing at the site driveway is approximately 47 feet wide with directional sidewalk ramps equipped with yellow detectable warning surfaces. The driveway stop bar extends beyond the de-facto crossing area with sufficient length for a standard passenger vehicle to stop between the stop bar and crossing area without significant interference in the crosswalk.

Proposed Safety Improvements

In order to improve pedestrian safety conditions at the project site access, several improvement options have been identified to create a safer pedestrian environment. The identified improvement options are provided in Table 2 on the following page, including the improvement description, example photo, improvement considerations, and potential crash reduction factor.

Conclusion

All of the potential pedestrian safety improvement options identified in this memorandum have the potential to significantly reduce the likelihood of pedestrian collisions at the Cross Creek Driveway \& US 101 intersection. In addition, the likelihood of vehicular only and bicycle-involved collisions would also be reduced as a result of these improvements. It is recommended that one or more of these pedestrian safety improvement options be implemented to create a safer pedestrian environment for the existing and proposed uses utilizing the access driveway.

These improvements are consistent with the existing character of the US 101 corridor throughout the City of Seaside and are not anticipated to generate significant implementation construction closures or generate unintended consequences such as sight distance reduction, pedestrian rerouting outside of the existing crossing area and sidewalk, or reduce pedestrian visibility.

Table 2: Pedestrian Safety Improvement Options

Improvement	Example	Improvement Considerations	Crash Reduction Factor
Install R1-5bR sign on Driveway Approach Leg	HERE	Installing a R1-5bR sign on the westbound approach leg will notify drivers where to stop and allow for pedestrians to safely cross the intersection.	25% average crash reduction for pedestrian crashes
Install High- Visibility Continental Crosswalks		High-visibility continental crosswalks delineate the pedestrian crossing area that drivers should avoid when a pedestrian is present. The existing stop bar is to remain in place (consistent with other locations along US 101 corridor).	19\% average crash reduction for vehicular crashes 40\% average crash reduction for pedestrian crashes
Install "SLOW" Pavement Legend at Northbound Right Turn Approach		Installing this pavement marking reinforces defensive driver behavior to slow down and be aware of their surroundings.	30% average crash reduction for all crash types
Install Flexible Post Delineators at Northbound Right Turn Approach		Installing delineators can reduce the crossing distance required for pedestrians, thereby reducing the mode conflict area between pedestrians and drivers.	30% average crash reduction for all crash types
Relocate Existing Streetlight North of Intersection to Driveway Intersection		Improving lighting at the intersection reduces the silhouette effect on pedestrians and makes pedestrians more visible to drivers. There is an existing pole ~ 50 feet north of the intersection which can be relocated.	12-71\% average crash reduction for nighttime crashes 44% average crash reduction for pedestrian crashes

[^8]

From:	Jeff Flory
Sent:	Monday, June 5, 2023 10:37 AM
To:	Jordan Sprague
Subject:	FW: FW: 2275 N Roosevelt Drive Safety Improvements
Follow Up Flag:	Follow up
Flag Status:	Flagged

Can you add this e-mail string to documents for Cross Creek.
Thanks

Jeff Flory

Community Development Director

Phone: (503) 738-7100
E-mail: iflory@cityofseaside.us
Mailing : 989 Broadway
Seaside, OR 97138

From: Steve Olstedt steveolstedt@gmail.com
Sent: Monday, June 5, 2023 10:06 AM
To: Jeff Flory jflory@cityofseaside.us
Subject: Fwd: FW: 2275 N Roosevelt Drive Safety Improvements

Caution! This message was sent from outside your organization.
Allow sender Block sender
Jeff; this is the document I spoke to you about.
\qquad Forwarded message \qquad
From: Steve Olstedt steveolstedt@gmail.com
Date: Mon, Jun 5, 2023 at 10:02 AM
Subject: Fwd: FW: 2275 N Roosevelt Drive Safety Improvements
To: KEARNS Richard A Richard.A.KEARNS@odot.state.or.us, WILLIAMS Virginia L Virginia.L.WILLIAMS@odot.state.or.us

Forwarded message
From: Steve Olstedt steveolstedt@gmail.com
Date: Wed, May 31, 2023 at 9:50 AM
Subject: Fwd: FW: 2275 N Roosevelt Drive Safety Improvements
To: Steve Olstedt steveolstedt@gmail.com, Ryan Osburn grosburn@hotmail.com
---------- Forwarded message \qquad
From: Nick Mesler nick@lancastermobley.com
Date: Mon, Oct 4, 2021 at 8:03 AM
Subject: Re: FW: 2275 N Roosevelt Drive Safety Improvements
To: STRAUSS Karen A Karen.A.STRAUSS@odot.state.or.us
Cc: KEARNS Richard A Richard.A.KEARNS@odot.state.or.us, UPTON Dorothy J Dorothy.J.UPTON@odot.state.or.us, BUFFINGTON Mark W Mark.W.BUFFINGTON@odot.state.or.us, NELSON Scott Scott.NELSON@odot.state.or.us, Adam adam@amengnr.com, Steve Olstedt steveolstedt@gmail.com, Ryan Osburn grosburn@hotmail.com, Elizabeth Shumaker elizabeth@lancastermobley.com

Good morning Karen,

Thank you so much to you and the rest of the ODOT team for the assistance in resolving this matter. We will continue to monitor the discussion as it further resolves.

Best,

Nick Mesler
Transportation Analyst
\square
321 SW 4th Avenue, Suite $400 \mid$ Portland, OR 97204
Office: 503-248-0313 x332 | Mobile: 201-968-7974
Website: lancastermobley.com
Offices: Portland, OR | Bend, OR

On Mon, Oct 4, 2021 at 6:48 AM STRAUSS Karen A Karen.A.STRAUSS@odot.state.or.us wrote:

Nick,

Please see below from our traffic engineer. In short, we agree that this is not the best location for an RRFB, and explain why. I'll also be forwarding this to the City.

Karen A. Strauss, PE (she/her/hers)

Development Review Coordinator, District I
Desk 503-986-2849 (note: I am teleworking so this will forward to my mobile phone.)
Mobile 503-509-7I73

From: UPTON Dorothy J Dorothy.J.UPTON@odot.state.or.us
Sent: Friday, October 1, 2021 10:23 AM
To: STRAUSS Karen A Karen.A.STRAUSS@odot.state.or.us
Cc: BUFFINGTON Mark W Mark.W.BUFFINGTON@odot.state.or.us; CHRISTENSEN Karen * Kc
Karen.CHRISTENSEN@odot.state.or.us; OBERY Gary R Gary.R.OBERY@odot.state.or.us; NELSON Scott
Scott.NELSON@odot.state.or.us; KEARNS Richard A < Richard.A.KEARNS@odot.state.or.us>
Subject: 2275 N Roosevelt Drive Improvement

Karen,

Please forward this as appropriate.

It is our understanding that the conditions of approval for your development includes "flashing crosswalk signage, approaching crosswalk along the northbound deceleration" meaning they want a flasher facing northbound US 101 traffic in the deceleration lane to warn the right turn movement of the possible pedestrian crossing. This would be in conjunction with the flashing signage for the marked crosswalk across the driveway opening.

The purpose of a flashing beacon at a crossing is to warn the oncoming traffic that pedestrians are crossing the travel lanes in a crosswalk. These devices are meant for traffic that could possibly intersect the pedestrians, not for traffic that is traveling in the same direction as the pedestrians. The movement the city is trying to control is the 'normal" right hand turn conflict that occurs at any driveway access. I spoke with our headquarter staff and they said it is not really possible for the flasher to only be seen by the turning drivers. While ODOT values safety, a flashing beacon pointed at northbound traffic for pedestrians that are not crossing US-101 would be confusing for drivers and not provide the safety enhancement sought. ODOT would not approve an installation of such a flasher facing US 101 traffic in this configuration.

If an RRFB is desired for a crossing of US 101, the City (not a private developer) would have to be the entity to maintain and operate the device - but under a permit that identifies the location and operating parameters. However, we do not believe what is given in the conditions of approval concept is appropriate and will not be seeking approval for it.

Dorothy J. Upton, P.E.

ODOT Region 2 Traffic Operations Engineer
455 Airport Road, SE Building A
Salem, OR 97301-5397

Office: 503-986-5761
dorothy.j.upton@odot.state.or.us

From: Nick Mesler nick@lancastermobley.com
Sent: Thursday, September 23, 2021 2:57 PM
To: STRAUSS Karen A Karen.A.STRAUSS@odot.state.or.us
Cc: KEARNS Richard A Richard.A.KEARNS@odot.state.or.us; UPTON Dorothy J Dorothy.J.UPTON@odot.state.or.us; BUFFINGTON Mark W Mark.W.BUFFINGTON@odot.state.or.us; NELSON Scott Scott.NELSON@odot.state.or.us; Adam adam@amengnr.com; Steve Olstedt steveolstedt@gmail.com; Ryan Osburn grosburn@hotmail.com; Elizabeth Shumaker elizabeth@lancastermobley.com
Subject: Re: FW: 2275 N Roosevelt Drive Safety Improvements

This message was sent from outside the organization. Treat attachments, links and requests with caution. Be conscious of the
information you share if you respond.
Hi Karen,

Thanks for reaching out on the subject matter here. The improvements listed in Condition \#9 are actually in relation to the existing driveway access just south of the Dutch Bros Coffee. The photo attached shows where the site development is located (outlined in yellow). No new access points along US 101 are being proposed.

The condition of approval is worded a little funky I will admit. Effectively there are two parts to it:

At the driveway

- improved lighting at the north and south ends of the crosswalk
- providing reflective thermal plastic slow, arrows \& crosswalk demarcations
- flashing crosswalk signage, approaching crosswalk along the northbound deceleration
and

Interior to the site parking area

- improved lighting along the future walkway north of the title company and dental office property

The specific request that we are taking issue with is "flashing crosswalk signage, approaching crosswalk along the northbound deceleration". It should read as "flashing crosswalk signage approaching crosswalk along the northbound deceleration" (without the comma). As shown at the driveway, there are a myriad of safety improvements that we concur are useful and appropriate, such as continental crosswalks (sketched in blue), SLOW pavement markings, better lighting, etc. However, the City of Seaside is also requesting "flashing crosswalk signage", like an RRFB, to be facing the northbound right turn lane (sketched in red). We believe this is an inappropriate application of an RRFB and would create confusion amongst drivers and pedestrians. Having the sign face the northbound approach (shaded in yellow) would make it appear as if pedestrians can cross at US 101 and expect vehicles to stop (which is not intended). Even
with arrow signage, this still has the potential to create a lot of confusion, and therefore an unsafe environment. Additionally, it would have to be on ODOT ROW, which becomes a maintenance issue for ODOT. We are seeking ODOT support in recommending that an RRFB not be implemented as it may well lead to driver/pedestrian confusion along this busy highway.

Feel free to give me a call with any other questions or concerns.

Best,

Nick Mesler

Transportation Analyst

321 SW 4th Avenue, Suite $400 \mid$ Portland, OR 97204
Office: 503-248-0313 x332 | Mobile: 201-968-7974
Website: lancastermobley.com
Offices: Portland, OR | Bend, OR

On Thu, Sep 23, 2021 at 1:16 PM STRAUSS Karen A Karen.A.STRAUSS@odot.state.or.us wrote:
Hello Nick,

Thanks for your patience while I investigated this question.

I don't believe I have a copy of the site plan for the development, which has made this a bit difficult to ferret out exactly where the City wants the RRFB. I saw this:

Condition 9: The examples of pedestrian safety measures that were provided by the applicant's traffic engineering firm must be incorporated into the access at North

Roosevelt Drive, in addition to improved lighting at the north and south ends of the crosswalk, providing reflective thermal plastic slow, arrows \& crosswalk demarcations, flashing crosswalk signage, approaching crosswalk along the northbound deceleration lane, and improved lighting along the future walkway north of the title company and dental office property, subject to authorization by the Oregon Department of Transportation under their permit authorization for the current access.

Is the city indicating they want the RRFB across the highway at this location? Or do they want it across the driveway?

As soon as I nail down where the actual location is for this, I can get you more answers. Or, if you have the site plan, that would help too. Thank you!

Karen A. Strauss, PE (she/her/hers)

Development Review Coordinator, District I
Desk 503-986-2849 (note: I am teleworking so this will forward to my mobile phone.)
Mobile 503-509-7I73

From: STRAUSS Karen A
Sent: Thursday, September 23, 2021 10:06 AM
To: UPTON Dorothy J Dorothy.J.UPTON@odot.state.or.us; BUFFINGTON Mark W
Mark.W.BUFFINGTON@odot.state.or.us
Cc: NELSON Scott Scott.NELSON@odot.state.or.us; KEARNS Richard A Richard.A.KEARNS@odot.state.or.us
Subject: RE: 2275 N Roosevelt Drive Safety Improvements

Attached is the NOD from the City, also.

Karen A. Strauss, PE (she/her/hers)

Development Review Coordinator, District I
Desk 503-986-2849 (note: I am teleworking so this will forward to my mobile phone.)

Mobile 503-509-7I73

From: STRAUSS Karen A
Sent: Thursday, September 23, 2021 10:05 AM
To: UPTON Dorothy J Dorothy.J.UPTON@odot.state.or.us; BUFFINGTON Mark W
Mark.W.BUFFINGTON@odot.state.or.us
Cc: NELSON Scott Scott.NELSON@odot.state.or.us; KEARNS Richard A Richard.A.KEARNS@odot.state.or.us
Subject: FW: 2275 N Roosevelt Drive Safety Improvements

Hi Dorothy and Mark,

This question is for both of you... Seaside recently gave Conditions of Approval regarding the Cross Creek Development, and in those recommendations they want RRFB's (See string below and google link for location.) It's Highway IOI, MP 19.945.

Thanks,
Karen

Karen A. Strauss, PE (she/her/hers)

Development Review Coordinator, District I

Desk 503-986-2849 (note: I am teleworking so this will forward to my mobile phone.)

Mobile 503-509-7I73

From: KEARNS Richard A Richard.A.KEARNS@odot.state.or.us
Sent: Thursday, September 2, 2021 10:12 AM
To: LINER Duane J Duane.J.LINER@odot.state.or.us; STRAUSS Karen A Karen.A.STRAUSS@odot.state.or.us
Subject: FW: 2275 N Roosevelt Drive Safety Improvements

This came from the Engineer working on the Cross Creek development in Seaside concerning the Seaside's Conditions of Approval requirements. This is Hwy 101, mp 19.945.
https://www.google.com/maps/@46.0082294,-
123.9146308,3a,75y,122.34h,78.13t/data=!3m6!1e1!3m4!1s4XVY6PiOVUdAIVfZ4yHQfw!2e0!7i13312!8i6656

From: Nick Mesler nick@lancastermobley.com
Sent: Thursday, September 2, 2021 9:52 AM
To: KEARNS Richard A Richard.A.KEARNS@odot.state.or.us
Cc: Steve Olstedt steveolstedt@gmail.com; Adam adam@amengnr.com; Ryan Osburn grosburn@hotmail.com;
Elizabeth Shumaker elizabeth@lancastermobley.com
Subject: Re: 2275 N Roosevelt Drive Safety Improvements

This message was sent from outside the organization. Treat attachments, links and requests with caution. Be conscious of the information you share if you respond.

Hi Richard,

Great talking to you this morning. Attached here is the Conditions of Approval for Cross Creek. Specifically, Condition 9 relates to traffic. The safety improvements outlined in the Pedestrian Safety Plan I sent you earlier (also outlined in the COA), thermal plastic, and lighting are all reasonable improvements to make, which are intended to be implemented. The flashing crosswalk signage (RRFB) we do not think is an appropriate solution for this application. Additionally, it would have to be on ODOT ROW, which becomes a maintenance issue for ODOT. We are seeking ODOT support in recommending that an RRFB not be implemented as it may well lead to driver/pedestrian confusion along this busy highway.

Thank you again - and feel free to reach out if you have any questions or concerns.

Best,

Nick Mesler

Transportation Analyst

321 SW 4th Avenue, Suite $400 \mid$ Portland, OR 97204
Office: 503-248-0313 x332 | Mobile: 201-968-7974
Website: lancastermobley.com

Offices: Portland, OR | Bend, OR

On Wed, Aug 18, 2021 at 3:55 PM Nick Mesler nick@lancastermobley.com wrote:

Good afternoon Richard,

I am working with Adam Dailey of AM Engineering and Steve Olstedt on a project in Seaside that takes direct access to an existing driveway along US 101. Our development intends to construct 80+ multi family homes on a vacant parcel. As part of the City of Seaside's Planning Commission's Conditions of Approval for the proposed development, they are requesting a number of safety improvements at the existing driveway. On behalf of our client, I am reaching out to you to discuss the implications of this COA improvement, how this will effect ODOT facilities, and whether or not this is indeed an appropriate solution that is supported by ODOT.

Many of the COA safety measures are relatively simple and are worthwhile improvements. However, the City is requiring an RRFB be placed at the driveway's north/south crosswalk on the eastern leg of the intersection. They are also requesting the RRFB to be visible to northbound right-turning traffic. We feel that this is an unusual application for this type of safety improvement, that may cause confusion amongst drivers and pedestrians alike, thereby creating a more dangerous crossing environment. We do not want to give drivers the impression that traffic will stop along the mainline US 101 approaches if the flashing signs are visible to the northbound approach, and thereby be giving right-of-way to pedestrians crossing US 101. Additionally, this is a relatively unusual application for an RRFB, given that it is at a driveway approach, where these are generally seen at mid-block crossings.

In either case, this improvement would need to be constructed on the southeastern corner of the intersection, which is ODOT-owned ROW. Given that this would fall under ODOT ownership, we are concerned that this solution would not be preferred by the agency.

In place of this, we have proposed a number of safety improvements that are more appropriate for this application, do not interfere significantly with ODOT ROW, and would not require additional ODOT maintenance. A memo we prepared for the City, detailing these improvements, is attached.

We are hoping to set up a short video conference call with you to discuss the best way to approach this issue and hear your thoughts on this matter. We are fully intent on being compliant with implementing improvements, but would like to see the best solution available implemented. Ultimately, the improvements implemented will require ODOT coordination as this will be done within ODOT ROW, so having this conversation now would be very helpful to us.

Please let me know what your thoughts are and if you would be open to having a meeting to discuss this further sometime next week.

Thank you in advance,

Nick Mesler

Transportation Analyst

321 SW 4th Avenue, Suite $400 \mid$ Portland, OR 97204
Office: 503-248-0313 x332 | Mobile: 201-968-7974
Website: lancastermobley.com

CROSS CREEK DEVELOPMENT 2 STORY

2315 N ROOSEVELT DR. SEASIDE, OREGON

DECEMBER $20^{\text {TH }}, 2022$
JOB\# 22-0411

STRUCTURAL CALCULATIONS

BY

A
This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.
(1) The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why,

A1. Hazards by Location

Search Information

Coordinates:	$46.00950363610217,-123.91231199529268$	
Elevation:	15 ft	
Timestamp:	$2022-09-09 \mathrm{~T} 18: 34: 24.752 \mathrm{ft}$	
Hazard Type:	Seismic	
Reference ASCE7-16 Document: Google Risk Category: II Site Class: D		

Basic Parameters

Name	Value	Description
S_{S}	1.294	MCE $_{\mathrm{R}}$ ground motion (period=0.2s)
S_{1}	0.679	MCE $_{\mathrm{R}}$ ground motion (period=1.0s)
S_{MS}	1.294	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	${ }^{*}$ null	Site-modified spectral acceleration value
S_{DS}	0.862	Numeric seismic design value at 0.2 s SA
$\mathrm{S}_{\mathrm{D} 1}$	${ }^{*}$ null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

-Additional Information

Name	Value	Description
SDC	* null	Seismic design category
F_{a}	1	Site amplification factor at 0.2 s
$\mathrm{~F}_{\mathrm{v}}$	${ }^{*}$ null	Site amplification factor at 1.0 s
CR_{S}	0.862	Coefficient of risk (0.2s)
CR_{1}	0.854	Coefficient of risk (1.0s)
PGA	0.65	MCE
F peak ground acceleration		
$\mathrm{F}_{\mathrm{PGA}}$	1.1	Site amplification factor at PGA

PGA $_{M}$	0.715	Site modified peak ground acceleration
T_{L}	16	Long-period transition period (s)
SsRT	1.294	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.501	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
SsD	1.86	Factored deterministic acceleration value (0.2s)
S1RT	0.679	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.796	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years) S1D
PGAd	0.967	Factored deterministic acceleration value (1.0s)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

STABILITY A
 ENGINEERING inc.

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

PROJECT: 22-0411 Cross Creek 2-Story								DATE:	9/9/22
Establish Dead Loads		3rd FIr		SEISMIC LOADS					
	Mat. Wt			2nd Fir		1st Flr		Base Level	
	DL(psf)	Area(sf)	DL(lbs)	Area(SF)	DL(lbs)	Area(SF)	DL(lbs)	Area(SF)	DL(lbs)
Wt. Roof	15	0	0	2288	34320	0	0	0	0
Wt. Ceil	15	0	0	0	0	0	0	0	0
Wt. Ext. Wall ${ }^{1}$	12	0	0	1512	18144	1512	18144	0	0
Wt. Ext. Wall ${ }^{2}$	12	0	0	0	0	0	0	0	0
Wt. Int. Wall	10	0	0	1776	17760	1776	17760	0	0
Wt. Floor	12	0	0	1953	23436	0	0	0	0
		Sum 3rd	0	Sum 2nd	93660	Sum 1st	35904	Sum Base	0
1. Total Weigh	Ext. Wall							Sum Total	129564
2. the Weight	xt. Wall Pe	dicular to S	ar Force						
Distribute Weights to Vario	Levels		Roof	3rd FL	2nd FL	1st FL			Wt
Tributrary We			Line	Line	Line	Llne			Sum
Wt Roof 3rd			0						0
Wt Ceil 3rd			0						0
$1 / 2 \mathrm{Wt} \mathrm{Ext}$. WI			0	0					0
$1 / 2 \mathrm{Wt}$ Ext. WI			0	0					
Wt Int. WI 3				0					0
Wt Floor 3				0					0
Wt Roof 2nd				34320					34320
Wt Ceil 2nd				0					0
$1 / 2 \mathrm{Wt} \mathrm{Ext}$. WI				9072	9072				18144
$1 / 2 \mathrm{Wt} \mathrm{Ext}$. WI				0	0				
Wt Int. WI 2					17760				17760
Wt Floor 2					23436				23436
Wt Roof 1st					0				0
Wt Ceil 1st					0				0
$1 / 2 \mathrm{Wt} \mathrm{Ext}$. WI					9072	9072			18144
$1 / 2 \mathrm{Wt}$ Ext. WI					0	0			
Wt Int. WI 1						17760			17760
Wt Floor 1						0			0
1/2 Wt Ext. W						0			
Wt Ceil Bsmt						0			
		Sum ${ }^{3}$	0	43392	59340	26832			102732
			0	34320	41196	17760			
3. Total Weigh	cluding To	W. Wall Wei		Total Weigh	cluding Ext.	all Weight Pe	ndicular to	Shear Force	

Determine Base Shear
*ASCE 7-16 Section 12.8

STABILITY A完
 ENGINEERING inc.

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

STABILITY \& ENGINEERING inc.

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

Definitions

L: Wall Length	$\mathrm{H}_{\text {max }}$: Opening height	$\mathrm{V}_{\text {wind }}$: Wind Shear
D: Door Length	W : Window Length	$H D_{\text {wind }}$: Hold-Down Force(wind)

$\mathrm{V}_{\text {seis }}$: Seismic Shear
$\mathrm{FR}_{\text {trib: }}$: Framing Tributary Width
$H D_{\text {seis }}$: Hold-Down Force(seismic)

Project: 22-0411 Cross Creek 2-Story
Loading Direction: F-B Loading Area: RIGHT WALL

Date: 125522 STABILITY
Name: MB ENGINEERING inc.
P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

WALL DESIGN

Definitions
L: Wall Length
D: Door Length
$\mathrm{H}_{\text {max }}$: Opening height
$V_{\text {wind }}$: Wind Shear
W: Window Length
$H D_{\text {wind }}$: Hold-Down Force(wind)
$\mathrm{V}_{\text {seis }}$: Seismic Shear
$H D_{\text {seis }}$: Hold-Down Force(seismic)
$\mathrm{FR}_{\text {trib: }}$: Framing Tributary Width Load Combo: . $6 \mathrm{D}+.7 \mathrm{E}, .6 \mathrm{D}+\mathrm{W}$

STABILITY
 ENGINEERING ${ }_{\text {inc. }}$

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

Project: 22-0411 Cross Creek 2-Story
Loading Direction: L-R Loading Area: BACK WALL

Dale: 125522 STABILITY
Name: м ${ }^{\text {m }}$ ENGINEERING ${ }_{\text {Inc. }}$
P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

WALL DESIGN

Definitions
L: Wall Length
D: Door Length
$\mathrm{H}_{\text {max }}$: Opening height
$V_{\text {wind }}$: Wind Shear
W: Window Length
$H D_{\text {wind }}$: Hold-Down Force(wind)
$\mathrm{V}_{\text {seis }}$: Seismic Shear
$H D_{\text {seis }}$: Hold-Down Force(seismic)
$\mathrm{FR}_{\text {trib: }}$: Framing Tributary Width Load Combo: . $6 \mathrm{D}+.7 \mathrm{E}, .6 \mathrm{D}+\mathrm{W}$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333

StruCalc Version 10.0.1.6
9/9/2022 12:12:09 PM
\#2 - Douglas-Fir-Larch - Dry Use
StuCal Verion 10.0 .16
Section Adequate By: 80.3\%

DEFLECTIONS				
Deflection due to lateral loads only: Live Load Deflection Criteria:			$\begin{gathered} \mathrm{IN}=\mathrm{L} / 1040 \\ \mathrm{~L} / 180 \end{gathered}$	
VERTICAL REACTIONS				
Live Load:	Vert-LL-Rxn =		0	lb
Dead Load:	Vert-DL-Rxn =		14	lb
Total Load:	Vert-TL-Rxn =			lb
HORIZONTAL REACTIONS				
Total Reaction at Top of Column:	TL-Rxn-Top =		133	lb
Total Reaction at Bottom of Column:	TL-Rxn-Bottom $=$		133	lb
COLUMN DATA				
Total Column Length:				
Unbraced Length (X-Axis) Lx:	8 ft			
Unbraced Length (Y-Axis) Ly:	0 ft			
Column End Condition-K (e):	1			
Axial Load Duration Factor	1.00			
Lateral Load Duration Factor (Wind/S	Seismic) 1.60			

Stud Calculations (Controlling Case Only):

LOADING DIAGRAM

AXIAL LOADING

Live Load:	$\mathrm{PL}=$	0 plf
Dead Load:	$\mathrm{PD}=$	0 plf
Column Self Weight:	$\mathrm{CSW}=14 \mathrm{plf}$	
Total Axial Load:	$\mathrm{PT}=\quad 14 \mathrm{plf}$	
LATERAL LOADING	(Dy Face)	
Uniform Lateral Load:	wL-Lat $=25$ psf	

Controlling Load Case: Axial Dead Load and Lateral loads (D + W or E)

Actual Compressive Stress:	$\mathrm{Fc}=$	2	psi
Allowable Compressive Stress:	$F c^{\prime}=$	1272	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	0	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	267	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	423	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	2153	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =	0	psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	2153	psi
Combined Stress Factor:	CSF =	0.2	

Project: 22-0411 2-STORY
Location: 8' SINGLE KING STUD
Column
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 2.9\%
Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
page

StruCalc Version 10.0.1.6
9/9/2022 12:13:29 PM

Column Calculations (Controlling Case Only):
Controlling Load Case: Axial Dead Load and Lateral loads (D + W or E)

Actual Compressive Stress:	$\mathrm{Fc}=$	2	psi
Allowable Compressive Stress:	$\mathrm{Fc}=$	1272	psi
Eccentricity Moment (X-X Axis):	$\mathrm{Mx}-\mathrm{ex}=$	0	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My -ey $=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	1144	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	1815	psi
Allowable Bending Stress (X-X Axis):	$\mathrm{Fbx}=$	1872	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$	0	psi
Allowable Bending Stress (Y-Y Axis):	$\mathrm{Fby}=$	1872	psi
Combined Stress Factor:	$\mathrm{CSF}=$	$\mathbf{0 . 9 7}$	

AXIAL LOADING		
Live Load:	$\mathrm{PL}=$	0 lb
Dead Load:	$\mathrm{PD}=\mathrm{lb}$	
Column Self Weight:	$\mathrm{CSW}=14 \mathrm{lb}$	
Total Axial Load:	$\mathrm{PT}=14 \mathrm{lb}$	
LATERAL LOADING	(Dy Face)	
Uniform Lateral Load:	wL-Lat $=143 \mathrm{plf}$	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

12/5/2022 Project: $22-0411$ Cross Creek - 2 Story						STABILITY ENGINEERING ${ }_{\text {inc }}$
TRUSS CONNECTIONS						
*BOLD INDICATES 2-PLY GIRDER (2-PLY); UNDERLINE INDICATES 3-PLY GIRDER						By: Max Beaudoin
	UPLIFT		LEGEND			
TRUSS	LEFT	RIGHT	COLOR	TIE	CAP.	
A01	866	866		SDWC15600	715	
A02	442	442		(2) SDWC15600	1115	
A03	680	680				
A04	408	408				
A05	586	959				
A06	308	648				
A07	404	685				
A08	392	633				
HRA1	194	0				
JA01	109	13				
JA02	109	52				
JA03	113	96				
JA04	105	135				
JA05	0	139				
JA06	0	140				
JA07	0	141				
JA08	0	146				
JA09	0	150				
JA10	0	150				
SA01	133	0				
SA02	121	0				

ROOF FRAMING GUIDE

Project: 22-0411 2-STORY
Location: UHDR 1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 4.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 48.8\%
Controlling Factor: Moment

DEFLECTIONS Center		
Live Load $0.01 \mathrm{lN} \mathrm{L/3906}$		
Dead Load	0.01 in	
Total Load 0.02 IN L/2332		
Live Load Deflect	tion Criteria: L/240	Total Load Deflection Criteria: L/180
REACTIONS ${ }^{\text {A }}$ -		
Live Load $\quad 1688 \mathrm{lb} 1781 \mathrm{lb}$		
Dead Load $\quad 1144 \mathrm{lb} 1206 \mathrm{lb}$		
Total Load 2832 lb 2987 lb		
Bearing Length 1.29 in 1.37 in		
BEAM DATA Center		
Span Length 4.5 ft		
Unbraced Length-Top 0 ft		
Unbraced Length-Bottom 4.5 ft		
Live Load Duration Factor 1.15		
Notch Depth	0.00	

POINT LOADS - CENTER SPAN
Load Number One
Live Load 1793 lb
Dead Load 1195 lb
Location $\quad 1.75 \mathrm{ft}$

TRAPEZOIDAL LOADS - CENTER SPAN			
Load Number	$\underline{\text { One }}$	Two	
Left Live Load	92 plf	551 plf	
Left Dead Load	61 plf	367 plf	
Right Live Load	92 plf	551 plf	
Right Dead Load	61 plf	367 plf	
Load Start	0 ft	1.75 ft	
Load End	1.75 ft	4.5 ft	
Load Length	1.75 ft	2.75 ft	

Project: 22-0411 2-STORY
Location: UHDR 2
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 118.8\%
Controlling Factor: Shear

DEFLECTIONS Center			
Live Load 0.01 IN L/4060			
Dead Load 0.01 in			
Total Load $0.02 \mathrm{IN} \mathrm{L/2419}$			
Live Load Deflection Criteria: L/240			Total Load Deflection Criteria: L/180
REACTIONS	A	B	
Live Load	954 lb	954 lb	
Dead Load	647 lb	647 lb	
Total Load	1601 lb	1601 lb	
Bearing Length	0.73 in	0.73 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length-	-Top	0 ft	
Unbraced Length-	h-Bottom	3.5 ft	
Live Load Duration	on Factor	1.15	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1346 \mathrm{p}$
$C d=1.15 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=207$
Cd=1.15	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- ${ }^{\text {c }}=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

$\begin{array}{lll}\text { Modulus of Elasticity: } & \mathrm{E}=\quad 1600 \mathrm{ksi} & \mathrm{E}= \\ \text { Comp. } \perp_{\text {to Grain: }} & \mathrm{Fc}-\perp_{=}=\begin{array}{rl}1600 \mathrm{ksi} \\ 625 \mathrm{psi} & \mathrm{Fc}-\perp^{\prime}= \\ 625 \mathrm{psi}\end{array}\end{array}$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6 12/5/2022 11:23:08 AM

Controlling Moment:

$1400 \mathrm{ft}-\mathrm{Ib}$
1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 $-1600 \mathrm{lb}$

4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 12.49 in3
11.6 in2 8.27 in4 $1400 \mathrm{ft}-\mathrm{lb} \quad 3438 \mathrm{ft}-\mathrm{lb}$ -1600 lb

Provided 30.66 in3 25.38 in 2 111.15 in4 3438 ft lb
3502 lb

Project: 22-0411 2-STORY
Location: UHDR 3
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 2.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 206.3\%
Controlling Factor: Shear

DEFLECTIONS Center			
Live Load 0.00 IN L/MAX			
Dead Load 0.00 in			
Total Load 0.00 IN L/6639			
Live Load Deflection Criteria: L/240			Total Load Deflection Criteria: L/180
REACTIONS	A	B	
Live Load	681 lb	681 lb	
Dead Load	462 lb	462 lb	
Total Load	1143 lb	1143 lb	
Bearing Length	0.52 in	0.52 in	
BEAM DATA		Center	
Span Length		2.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	2.5 ft	
Live Load Duratio	on Factor	1.15	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1346$
$C d=1.15 \mathrm{CF}=1.30$	
$\mathrm{Fv}=1180 \mathrm{psi}$	$\mathrm{Fv}^{\prime}=207$
Cd=1.15	
E = 1600 ksi	$\mathrm{E}^{\prime}=1600$
$\mathrm{Fc}-\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

$\begin{array}{lll}\text { Modulus of Elasticity: } & \mathrm{E}=\quad 1600 \mathrm{ksi} & \mathrm{E}^{\prime}= \\ \text { Comp. } \perp \text { to Grain: } & \mathrm{Fc}-\perp^{\prime}=\begin{array}{rl}1600 \mathrm{ksi} \\ 625 \mathrm{psi} & \mathrm{Fc}-\perp^{\prime}= \\ 625 \mathrm{psi}\end{array}\end{array}$

Controlling Moment:

$714 \mathrm{ft}-\mathrm{lb}$
1.25 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 1143 lb

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:
Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
6.37 in 3	30.66 in 3
8.28 in 2	25.38 in 2
3.01 in 4	111.15 in 4
$714 \mathrm{ft}-\mathrm{lb}$	$3438 \mathrm{ft}-\mathrm{lb}$
1143 lb	3502 lb

page
Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6 12/5/2022 11:23:34 AM

Project: 22-0411 2-STORY
Location: UHDR 4
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2-Douglas-Fir-Larch - Dry Use
Section Adequate By: 46.8\%
Controlling Factor: Shear

DEFLECTIONS Center			
Live Load $0.02 \mathrm{lN} \mathrm{L/2715}$			
Dead Load 0.01 in			
Total Load $0.03 \mathrm{lN} \mathrm{L/1623}$			
Live Load Deflection Criteria: L/240			Total Load Deflection Criteria: L/180
REACTIONS	A	B	
Live Load	1426 lb	1426 lb	
Dead Load	960 lb	960 lb	
Total Load	2386 lb	2386 lb	
Bearing Length	1.09 in	1.09 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length-	-Top	0 ft	
Unbraced Length-	-Bottom	3.5 ft	
Live Load Duratio	on Factor	1.15	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1346 \mathrm{ps}$
$C d=1.15 \quad C F=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=207$
$C d=1.15$	
$=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
$\mathrm{c}-\perp=625 \mathrm{ps}$	Fc- ${ }^{\prime}=625$

Shear Stress:
Modulus of Elasticity:
Comp. $\perp^{\text {to Grain: }}$
Fc- $\perp=625 \mathrm{psi} \quad \mathrm{Fc}-\perp^{\prime}=625 \mathrm{psi}$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 11:23:59 AM

Controlling Moment:
$2088 \mathrm{ft}-\mathrm{lb}$
1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad 2386 \mathrm{lb}$

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 18.62 in3 17.29 in2 25.38 in 12.33 in4 $\quad 111.15 \mathrm{in} 4$ $2088 \mathrm{ft}-\mathrm{lb} \quad 3438 \mathrm{ft}-\mathrm{lb}$ $2386 \mathrm{lb} \quad 3502 \mathrm{lb}$

LOADING DIAGRAM

UNIFORM LOADS							Center	
Uniform Live Load	815	plf						
Uniform Dead Load	543	plf						
Beam Self Weight	6	plf						
Total Uniform Load	1364	plf						

Project: 22-0411 2-STORY
Location: UHDR 5
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 71.2\%
Controlling Factor: Shear

DEFLECTIONS Center		
Live Load	$0.01 \mathrm{IN} \mathrm{L/4311}$	Total Load Deflection Criteria: L/180
Dead Load	0.01 in	
Total Load	0.01 IN L/2577	
Live Load Deflection Criteria: L/240		
REACTIONS	A \quad B	
Live Load	1223 lb 1223 lb	
Dead Load	823 lb 823 lb	
Total Load	2046 lb 2046 lb	
Bearing Length	0.93 in 0.93 in	
BEAM DATA	Center	
Span Length	3 ft	
Unbraced Length	-Top 0 ft	
Unbraced Length	-Bottom 3 ft	
Live Load Duratio	on Factor 1.15	
Notch Depth	0.00	

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1346 \mathrm{p}$
$C d=1.15 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=207$
Cd=1.15	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- ${ }^{\text {c }}=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

Shear Stress:
Modulus of Elasticity:
Comp. $\perp^{\text {to Grain: }}$
Fc- $\perp=625 \mathrm{psi} \quad \mathrm{Fc}-\perp^{\prime}=625 \mathrm{psi}$

LOADING DIAGRAM

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 11:24:18 AM

Controlling Moment:

$1534 \mathrm{ft}-\mathrm{lb}$
1.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 $-2045 \mathrm{lb}$

At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
13.68 in 3	30.66 in 3
14.82 in 2	25.38 in 2
7.76 in 4	111.15 in 4
$1534 \mathrm{ft}-\mathrm{lb}$	$3438 \mathrm{ft-lb}$
-2045 lb	3502 lb

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 11:25:25 AM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 19.2\%

COLUMN PROPERTIES
 \#2-Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	364	psi
Allowable Compressive Stress:	Fc' $=$	1279	psi
Eccentricity Moment (X-X Axis):	Mx -ex $=$	124	ft -Ib
Eccentricity Moment (Y-Y Axis):	My-ey =	124	ft -Ib
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	ft-lb
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft-lb}$
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	1346	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$		psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	1346	
Combined Stress Factor:	CSF =	0.81	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 11:25:47 AM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 59.6\%

VERTICAL REACTIONS			
Live Load:	Vert-LL-Rxn $=$	954	lb
Dead Load:	Vert-DL-Rxn $=$	660	lb
Total Load:	Vert-TL-Rxn $=$	1614 lb	

COLUMN DATA		
Total Column Length:	7 ft	
Unbraced Length (X-Axis) Lx:	7	ft
Unbraced Length (Y-Axis) Ly:	0	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.15	

COLUMN PROPERTIES
 \#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	196	psi
Allowable Compressive Stress:	Fc' $=$	1279	pi
Eccentricity Moment (X-X Axis):	Mx-ex =	67	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	67	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft-lb}$
Moment Due to Lateral Loads (Y-Y Axis):	My =	0	ft-lb
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	1346	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$	0	psi
Allowable Bending Stress (Y-Y Axis):	Fby' $=$	1346	psi
Combined Stress Factor:	CSF =	0.4	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 11:26:07 AM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 71.8\%

VERTICAL REACTIONS			
Live Load:	Vert-LL-Rxn $=$	681	lb
Dead Load:	Vert-DL-Rxn $=$	475	lb
Total Load:	Vert-TL-Rxn $=1156 \mathrm{lb}$		

COLUMN DATA		
Total Column Length:	7 ft	
Unbraced Length (X-Axis) Lx:	7 ft	
Unbraced Length (Y-Axis) Ly:	0	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.15	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Compressive Stress:	Base Values	Adjusted
	$\mathrm{Fc}=1350 \mathrm{psi}$	Fc' $=1279 \mathrm{psi}$
	$C d=1.15 \mathrm{Cf}=1.10$	$C p=0.75$
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=900 \mathrm{psi} \\ & \mathrm{Cd}=1.15 \mathrm{CF}=1.30 \end{aligned}$	$\begin{aligned} & \text { Fbx' }=1346 \mathrm{psi} \\ & C=1.00 \end{aligned}$
Bending Stress (Y-Y Axis):	$\begin{aligned} & \text { Fby }=900 \mathrm{psi} \\ & C d=1.15 \quad C F=1.30 \end{aligned}$	Fby' $=1346 \mathrm{psi}$
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600 \mathrm{ksi}$
Column Section (X-X Axis):		$\mathrm{dx}=\quad 5.5$
Column Section (Y-Y Axis):		$\mathrm{dy}=\quad 1.5$
Area:		A $=\quad 8.25$
Section Modulus (X-X Axis):		Sx = 7.56
Section Modulus (Y-Y Axis):		Sy = 2.06
Slenderness Ratio:		Lex/dx $=15.27$
		Ley/dy =

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	140	ps
Allowable Compressive Stress:	Fc' $=$	1279	ps
Eccentricity Moment (X-X Axis):	Mx-ex =	48	ft -I
Eccentricity Moment (Y-Y Axis):	My-ey =	48	t-l
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$		t-l
Moment Due to Lateral Loads (Y-Y Axis):	My =	0	$\mathrm{ft-lb}$
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	1346	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$		ps
Allowable Bending Stress (Y-Y Axis):	Fby' =	1346	psi
Combined Stress Factor:	CSF =	0.28	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 11:26:27 AM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 37.4\%

VERTICAL REACTIONS			
Live Load:	Vert-LL-Rxn $=1426$	lb	
Dead Load:	Vert-DL-Rxn $=$	973	lb
Total Load:	Vert-TL-Rxn $=2399 \mathrm{lb}$		

COLUMN DATA		
Total Column Length:	7	ft
Unbraced Length (X-Axis) Lx:	7	ft
Unbraced Length (Y-Axis) Ly:	0	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.15	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Compressive Stress:	Base Values	Adjusted
	$\mathrm{Fc}=1350 \mathrm{psi}$	$\mathrm{Fc}^{\prime}=1279 \mathrm{psi}$
	$C d=1.15 \mathrm{Cf}=1.10 \mathrm{Cp}=0.75$	
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=900 \mathrm{psi} \\ & \mathrm{Cd}=1.15 \mathrm{CF}=1.30 \end{aligned}$	$\begin{aligned} & \text { Fbx' }=1346 \mathrm{psi} \\ & \mathrm{C}=1.00 \end{aligned}$
Bending Stress (Y-Y Axis):	$\begin{aligned} & \text { Fby }=900 \mathrm{psi} \\ & C d=1.15 \quad C F=1.30 \end{aligned}$	Fby' $=1346 \mathrm{psi}$
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600 \mathrm{ksi}$
Column Section (X-X Axis):		$\mathrm{dx}=\quad 5.5$
Column Section (Y-Y Axis):		$\mathrm{dy}=\quad 1.5$
Area:		$\mathrm{A}=\quad 8.25$
Section Modulus (X-X Axis):		Sx $=07.56$
Section Modulus ($\mathrm{Y}-\mathrm{Y}$ Axis):		Sy = $\quad 2.06$
Slenderness Ratio:		Lex/dx = 15.27
		Ley/dy = 0

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	291	ps
Allowable Compressive Stress:	Fc' $=$	1279	ps
Eccentricity Moment (X-X Axis):	Mx-ex $=$	99	ft-l
Eccentricity Moment (Y-Y Axis):	My-ey =	99	ft-I
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft-lb}$
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\mathrm{My}=$	0	ft-l
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1346	ps
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =	0	
Allowable Bending Stress (Y-Y Axis):	Fby' =	1346	
Combined Stress Factor:	CSF =	0.63	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 11:26:48 AM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 47.3\%

| VERTICAL REACTIONS | | |
| :--- | :--- | :--- | :--- |
| Live Load: | Vert-LL-Rxn $=1223 \mathrm{lb}$ | |
| Dead Load: | Vert-DL-Rxn $=836 \mathrm{lb}$ | |
| Total Load: | Vert-TL-Rxn $=2059 \mathrm{lb}$ | |

COLUMN DATA		
Total Column Length:	7 ft	
Unbraced Length (X-Axis) Lx:	7 ft	
Unbraced Length (Y-Axis) Ly:	0	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.15	

COLUMN PROPERTIES

\#2-Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	250	psi
Allowable Compressive Stress:	$\mathrm{Fc}^{\prime}=$	1279	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	85	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	85	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	My =	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	1346	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$		psi
Allowable Bending Stress ($\mathrm{Y}-\mathrm{Y}$ Axis):	Fby' =	1346	psi
Combined Stress Factor:	CSF =	0.53	

UPPER FLOOR FRAMING GUIDE

Project: 22-0411 2-STORY
Location: TYP JOISTS
Floor Joist
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 15.0 \mathrm{FT}$ @ 16 O.C.
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 12.0\%
Controlling Factor: Moment

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch

Bending Stress:	Base Values	Adjusted
	$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1035 \mathrm{psi}$
	$C d=1.00 \quad C F=1.00 \quad C r=1.15$	
Shear Stress:	$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=180 \mathrm{psi}$
	$C d=1.00$	
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600 \mathrm{ksi}$
Comp. $\perp^{\text {to Grain: }}$	$\mathrm{Fc}-\perp=625 \mathrm{psi}$	$\mathrm{Fc}-\mathrm{L}^{\prime}=625 \mathrm{psi}$
Controlling Moment:	$2437 \mathrm{ft}-\mathrm{lb}$	

7.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad 650 \mathrm{lb}$

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	28.26 in 3	31.64 in 3
Area (Shear):	5.42 in 2	$16.88 \mathrm{in2}$
Moment of Inertia (deflection):	$123.38 \mathrm{in4}$	177.98 in 4
Moment:	$2437 \mathrm{ft}-\mathrm{lb}$	$2729 \mathrm{ft-lb}$
Shear:	650 lb	2025 lb

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
page
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 5.0$ FT Pressure Treated @ 16 O.C.
\#2 - Hem-Fir - Dry Use
Section Adequate By: 374.3\%
Controlling Factor: Moment

MATERIAL PROPERTIES

\#2 - Hem-Fir

Bending Stress:

Base Values		Adjusted	
$\mathrm{Fb}=$	850 psi	$\mathrm{Fb}^{\prime}=$	938
$C d=1.00 \mathrm{CF}=1.20 \mathrm{Cr}=1.15 \mathrm{Ci}=0.80$			
$\mathrm{Fv}=$	150 psi	Fv' $=$	120
$\mathrm{Cd}=1.00 \mathrm{Cl}=0.80$			
$\begin{aligned} & E= \\ & C i=0 \end{aligned}$	1300 ksi	$\mathrm{E}^{\prime}=$	1235
Fc- -	405 psi	c	405

Controlling Moment:

JOIST DATA	$\frac{\text { Center }}{5} \mathrm{ft}$
Span Length	0 ft
Unbraced Length-Top	0 ft
Unbraced Length-Bottom	0 ft
Floor sheathing applied to top of joists-top of joists fully braced.	
Floor Duration Factor	1.00

JOIST LOADING			
Uniform Floor Loading	Center		
Live Load	LL =	40	
Dead Load	DL =	12	psf
Total Load	TL =	52	
TL Adj. For Joist Spacin	W	. 3	plf

LOADING DIAGRAM

2.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	2.77 in 3	13.14 in 3
Area (Shear):	2.17 in 2	10.88 in 2
Moment of Inertia (deflection):	3.64 in 4	47.63 in 4
Moment:	$217 \mathrm{ft-lb}$	1028 ft lb
Shear:	173 lb	870 lb

Project: 22-0411 2-STORY
Location: STAIR JOISTS
Floor Joist
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 9.25 \mathrm{IN} \times 8.0$ FT Pressure Treated @ 16 O.C.
\#2 - Hem-Fir - Dry Use
Section Adequate By: 15.0\%
Controlling Factor: Moment

DEFLECTIONS Center			
Live Load	0.10	IN L/955	
Dead Load	0.03	in	
Total Load	0.13	IN L/764	
Live Load Deflection Criteria: L/360			Total Load Deflection Criteria: L/240
REACTIONS	A	B	
Live Load	533	lb 533 lb	
Dead Load	133	lb 133 lb	
Total Load	666	lb 666 lb	
Bearing Length	1.10	in 1.10 in	
SUPPORT LOADS A B		A ${ }^{\text {B }}$	
Live Load	40	400 plf 400	
Dead Load		100 plf 100	
Total Load		500 plf 500	

MATERIAL PROPERTIES

\#2 - Hem-Fir

Bending Stress:

Base Values		Adjusted	
$\mathrm{Fb}=$	850 psi	$\mathrm{Fb}^{\prime}=$	860
$C d=1.00 \quad C F=1.10 \quad \mathrm{Cr}=1.15 \mathrm{Ci}=0.80$			
$\mathrm{Fv}=$	150 psi	$\mathrm{Fv}^{\prime}=$	120
$C d=1.00 \mathrm{Ci}=0.80$			
$\begin{aligned} & E= \\ & C i=0.95 \end{aligned}$	1300 ksi	E' =	1235
Fc- -	405 psi	Fc- ${ }^{\text {- }}$	405

Controlling Moment:
$1333 \mathrm{ft}-\mathrm{lb}$
4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: 667 lb

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	$\frac{R e q ' d}{}$	Provided
Section Modulus:	18.6 in 3	21.39 in 3
Area (Shear):	8.33 in 2	$13.88 \mathrm{in2}$
Moment of Inertia (deflection):	37.31 in 4	$98.93 \mathrm{in4}$
Moment:	$1333 \mathrm{ft}-\mathrm{lb}$	$1533 \mathrm{ft}-\mathrm{lb}$
Shear:	667 lb	1110 lb

Project: 22-0411 2-STORY
Location: HDR 1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 4.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 1111.3\%
Controlling Factor: Moment

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{p}$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' = 180
Cd=1.00	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

$\begin{array}{lll}\text { Modulus of Elasticity: } & \mathrm{E}=\quad 1600 \mathrm{ksi} & \mathrm{E}^{\prime}= \\ \text { Comp. } \perp_{\text {to Grain: }} & \mathrm{Fc}-\perp_{=}=\begin{array}{rl}1600 \mathrm{ksi} \\ 625 \mathrm{psi} & \mathrm{Fc}-\perp^{\prime}= \\ 625 \mathrm{psi}\end{array}\end{array}$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 2:14:08 PM

Controlling Moment:

$247 \mathrm{ft}-\mathrm{lb}$
2.25 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad-219 \mathrm{lb}$

5.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 2.53 in3 1.83 in2 2.5 in4 $247 \mathrm{ft}-\mathrm{lb}$ $-219 \mathrm{lb}$

Provided 30.66 in3 25.38 in2 111.15 in 4 $2989 \mathrm{ft}-\mathrm{lb}$ 3045 lb

Project: 22-0411 2-STORY
Location: HDR 2
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 664.8\%
Controlling Factor: Shear

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{p}$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' = 180
Cd=1.00	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

$\begin{array}{lll}\text { Modulus of Elasticity: } & \mathrm{E}=\quad 1600 \mathrm{ksi} & \mathrm{E}^{\prime}= \\ \text { Comp. } \perp \text { to Grain: } & \mathrm{Fc}-\perp=\begin{array}{r}1600 \mathrm{ksi} \\ 625 \mathrm{psi} \\ \mathrm{Fc}-\perp^{\prime}= \\ 625 \mathrm{psi}\end{array}\end{array}$

StruCalc Version 10.0.1.6
12/5/2022 2:14:43 PM
Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
page

Project: 22-0411 2-STORY
Location: HDR 3
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 2.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 970.8\%
Controlling Factor: Shear

DEFLECTIONS Center			
Live Load 0.00 IN L/MAX			
Dead Load 0.00 in			
Total Load 0.00 IN L/MAX			
Live Load Deflection Criteria: L/360			Total Load Deflection Criteria: L/240
REACTIONS	A	B	
Live Load	159 lb	159 lb	
Dead Load	126 lb	126 lb	
Total Load	285 lb	285 lb	
Bearing Length	0.13 in	0.13 in	
BEAM DATA		Center	
Span Length		2.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	2.5 ft	
Live Load Duratio	on Factor	1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{p}$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' = 180
Cd=1.00	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 2:15:05 PM

Modulus of Elasticity: $\quad \mathrm{E}=1600 \mathrm{ksi} \quad \mathrm{E}=\quad 1600 \mathrm{ksi}$
Comp. $\perp_{\text {to Grain: }} \quad \mathrm{Fc}-\perp=625 \mathrm{psi} \quad \mathrm{Fc}-\perp^{\prime}=625 \mathrm{psi}$

Controlling Moment:

$178 \mathrm{ft}-\mathrm{lb}$
1.25 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad-284 \mathrm{lb}$

3.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:
Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd
1.82 in3 Provided
30.66 in3

1 in4 $\quad 111.15$ in4
$178 \mathrm{ft}-\mathrm{lb} \quad 2989 \mathrm{ft}-\mathrm{lb}$
$-284 \mathrm{lb} \quad 3045 \mathrm{lb}$

Project: 22-0411 2-STORY
Location: HDR 4
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 191.2\%
Controlling Factor: Shear

DEFLECTIONS Center			Total Load Deflection Criteria: L/240
Live Load	0.01 iN	L/5182	
Dead Load	0.00 in		
Total Load	0.01 IN	L/3703	
Live Load Deflection Criteria: L/360			
REACTIONS	A	B	
Live Load	747 lb	747 lb	
Dead Load	298 lb	298 lb	
Total Load	1045 lb	1045 lb	
Bearing Length	0.48 in	0.48 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	3.5 ft	
Live Load Duratio	on Factor	1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{p}$
$C d=1.00 \quad C F=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=180$
Cd=1.00	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
$\mathrm{Fc}-\perp=625 \mathrm{psi}$	25

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6 12/6/2022 12:18:44 PM

Shear Stress:
Modulus of Elasticity: $\quad \mathrm{E}=1600 \mathrm{ksi} \quad \mathrm{E}^{\prime}=\quad 1600 \mathrm{ksi}$
Comp. $\perp_{\text {to Grain: }} \quad$ Fc $-\perp=625$ psi \quad Fc $-\perp^{\prime}=625$ psi

Controlling Moment:

$915 \mathrm{ft}-\mathrm{lb}$
1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2
Controlling Shear: $\quad-1046 \mathrm{lb}$
4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
9.38 in 3	30.66 in 3
8.71 in 2	25.38 in 2
7.72 in 4	111.15 in 4
$915 \mathrm{ft-lb}$	2989 ft lb
-1046 lb	3045 lb

Project: 22-0411 2-STORY
Location: HDR 5
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.0 \mathrm{FT}$
\#2-Douglas-Fir-Larch - Dry Use
Section Adequate By: 460.0\%
Controlling Factor: Shear

DEFLECTIONS Center			Total Load Deflection Criteria: L/240
Live Load	0.00 IN	L/MAX	
Dead Load	0.00 in		
Total Load	0.00 IN	L/9692	
Live Load Deflection Criteria: L/360			
REACTIONS	A	B	
Live Load	363 lb	363 lb	
Dead Load	181 lb	181 lb	
Total Load	544 lb	544 lb	
Bearing Length	0.25 in	0.25 in	
BEAM DATA Center			
Span Length		3 ft	
Unbraced Length-Top		0 ft	
Unbraced Length-Bottom		3 ft	
Live Load Duration Factor		1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{ps}$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=180$
$C d=1.00$	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6 12/6/2022 12:19:09 PM

Controlling Moment:

$408 \mathrm{ft}-\mathrm{lb}$
1.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 $$
-544 \mathrm{lb}
$$

At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd
4.18 in3
4.53 in2
25.38 in 2
2.76 in4 $\quad 111.15$ in4 $408 \mathrm{ft}-\mathrm{lb} \quad 2989 \mathrm{ft}-\mathrm{lb}$
$-544 \mathrm{lb} \quad 3045 \mathrm{lb}$

Project: 22-0411 2-STORY
Location: HDR 6
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 110.8\%
Controlling Factor: Shear

DEFLECTIONS Center			
$\begin{array}{lll}\text { Live Load } & 0.01 & \text { IN L/4609 }\end{array}$			
Dead Load 0.01 in			
Total Load 0.02 IN L/2680			
Live Load Deflection Criteria: L/360			Total Load Deflection Criteria: L/240
REACTIONS	A	B	
Live Load	840 lb	840 lb	
Dead Load	605 lb	605 lb	
Total Load	1445 lb	1445 lb	
Bearing Length	0.66 in	0.66 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	3.5 ft	
Live Load Duratio	O Factor	1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{p}$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' = 180
Cd=1.00	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

$\begin{array}{lll}\text { Modulus of Elasticity: } & \mathrm{E}=\quad 1600 \mathrm{ksi} & \mathrm{E}= \\ \text { Comp. } \perp_{\text {to Grain: }} & \mathrm{Fc}-\perp_{=}=\begin{array}{rl}1600 \mathrm{ksi} \\ 625 \mathrm{psi} & \mathrm{Fc}-\perp^{\prime}= \\ 625 \mathrm{psi}\end{array}\end{array}$

StruCalc Version 10.0.1.6
12/5/2022 2:16:37 PM

Controlling Moment:
$1264 \mathrm{ft}-\mathrm{lb}$
1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad-1445 \mathrm{lb}$

4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 12.96 in3
12.04 in2 9.95 in4 $\quad 111.15 \mathrm{in} 4$ $1264 \mathrm{ft}-\mathrm{lb} \quad 2989 \mathrm{ft}-\mathrm{lb}$

LOADING DIAGRAM

UNIFORM LOADS							$\frac{\text { Center }}{}$	
Uniform Live Load	480	plf						
Uniform Dead Load	340	plf						
Beam Self Weight	6	plf						
Total Uniform Load	826	plf						

Project: 22-0411 2-STORY
Location: FB1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 4.0$ FT Pressure Treated
\#2 - Hem-Fir - Dry Use

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 12:59:26 PM
Section Adequate By: 34.2\%
Controlling Factor: Shear

DEFLECTIONS Center		
Live Load	$0.01 \mathrm{IN} \mathrm{L/4580}$	
Dead Load	0.00 in	
Total Load	0.01 IN L/3641	
Live Load Deflection Criteria: L/360		Total Load Deflection Criteria: L/240
REACTIONS	A $\quad \underline{B}$	
Live Load	800 lb 800 lb	
Dead Load	206 lb 206 lb	
Total Load	1006 lb 1006 lb	
Bearing Length	1.66 in 1.66 in	
BEAM DATA Center		
Span Length 4 ft		
Unbraced Length-Top 0 ft		
Unbraced Length-Bottom 4 ft		
Live Load Duration Factor 1.00		
Notch Depth 0.00		

MATERIAL PROPERTIES

\#2-Hem-Fir

Bending Stress:

Base Values		Adjusted	
$\mathrm{Fb}=$	850 psi	Fb'	680 p
$C d=1.00 \quad C F=1.00 \quad \mathrm{Ci}=0.80$			
$\mathrm{Fv}=$	150 psi	$\mathrm{Fv}^{\prime}=$	120
$\mathrm{Cd}=1.00 \mathrm{Cl}=0.80$			
$\mathrm{E}=$	1300 ksi	$\mathrm{E}^{\prime}=$	1235
$\mathrm{Ci}=0.95$			
Fc- ${ }^{\text {- }}=$	405 psi	Fc-	405

Comp. $\perp^{\text {to Grain: }}$

Controlling Moment:

$1006 \mathrm{ft}-\mathrm{lb}$
2.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2
Controlling Shear: $\quad-1006 \mathrm{lb}$
At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	17.76 in 3	31.64 in 3
Area (Shear):	$12.58 \mathrm{in2}$	16.88 in 2
Moment of Inertia (deflection):	13.99 in 4	177.98 in 4
Moment:	$1006 \mathrm{ft-lb}$	$1793 \mathrm{ft-lb}$
Shear:	-1006 lb	1350 lb

Shear Stress:
Modulus of Elasticity: -1006 lb 1350 lb

Project: 22-0411 2-STORY
Location: FB2
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 8.0$ FT Pressure Treated $(6.5+1.5)$
\#2 - Hem-Fir - Dry Use
Section Adequate By: 119.0\%
Controlling Factor: Moment

CAUTIONS

* Laminations are to be fully connected to provide uniform transfer of loads to all members

Controlling Moment: $\quad-1611 \mathrm{ft}-\mathrm{lb}$

Over right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2, 3

Controlling Shear: $\quad 1141 \mathrm{lb}$

At left support of span 3 (Right Span)
Created by combining all dead loads and live loads on span(s) 2, 3

Comparisons with required sections:
Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
28.9 in 3	63.28 in 3
$14.27 \mathrm{in2}$	33.75 in 2
71.18 in 4	355.96 in 4
-1611 ft lb	$3527 \mathrm{ft-lb}$
1141 lb	2700 lb

StruCalc Version 10.0.1.6 12/6/2022 1:00:19 PM

.

*

Divad Load 206 lb
Location $\quad 1.5 \mathrm{ft}$

* Load obtained from Load Tracker. See Summary Report for details.

Project: 22-0411 2-STORY
Location: DB1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$5.5 \mathrm{IN} \times 9.5 \mathrm{IN} \times 12.0 \mathrm{FT}$
\#2 - Hem-Fir - Dry Use
Section Adequate By: 85.0\%
Controlling Factor: Moment

DEFLECTIONS Center			Total Load Deflection Criteria: L/240
Live Load	0.11 IN	L/1334	
Dead Load	0.04 in		
Total Load	0.15 IN	/955	
Live Load Deflection Criteria: L/360			
REACTIONS	A	B	
Live Load	600 lb	600 lb	
Dead Load	238 lb	238 lb	
Total Load	838 lb	838 lb	
Bearing Length	0.38 in	0.38 in	
BEAM DATA Center			
Span Length		12 ft	
Unbraced Length-Top		0 ft	
Unbraced Length-Bottom		12 ft	
Live Load Duration Factor		1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Hem-Fir

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=675 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=675$
$C d=1.00 \quad C F=1.00$	
$\mathrm{Fv}=140 \mathrm{psi}$	$\mathrm{Fv}^{\prime}=140$
Cd=1.00	
$\mathrm{E}=1100 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1100$
$\mathrm{c}-\perp=405 \mathrm{ps}$	Fc- ${ }^{\prime}=405$

Max Beaudoin
Stability Engineering Inc.
(77 NE 2nd Street
Corvallis OR 97333

StruCalc Version 10.0.1.6
12/5/2022 2:38:19 PM

Shear Stress:	$\mathrm{Fv}=140 \mathrm{psi}$	$\mathrm{Fv}=$	140 psi
Modulus of Elasticity:	$\mathrm{Cd}=1.00$	$\mathrm{E}=1100 \mathrm{ksi}$	$\mathrm{E}=$
	$\mathrm{F}=$	1100 ksi	

Comp. $\perp^{\text {to Grain: }}$	$\mathrm{Fc}-\perp=405 \mathrm{psi}$	$\mathrm{Fc}-\perp^{\prime}=405 \mathrm{psi}$

Controlling Moment:
 $2515 \mathrm{ft}-\mathrm{lb}$

6.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad 838 \mathrm{lb}$

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

$\frac{\text { Req'd }}{}$	Provided
44.72 in 3	82.73 in 3
8.98 in 2	52.25 in 2
106.02 in 4	392.96 in 4
$2515 \mathrm{ft}-\mathrm{lb}$	$4654 \mathrm{ft-lb}$
838 lb	4877 lb

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 1:00:46 PM
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 3.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 82.2\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	800 lb
Dead Load: Ve	Vert-DL-Rxn =	224 lb
Total Load: Ve	Vert-TL-Rxn $=$	1024 lb
COLUMN DATA		
Total Column Length:		
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 8 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:	$y: \quad 0 \mathrm{ft}$	
Column End Condition-K (e):): 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	98	psi
Allowable Compressive Stress:	$\mathrm{Fc}^{\prime}=$	568	psi
Eccentricity Moment (X-X Axis):	Mx -ex $=$	42	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	42	ft -lb
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1350	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =		psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	1350	psi
Combined Stress Factor:	CSF =	0.18	

AXIAL LOADING

| Live Load: | $\mathrm{PL}=800 \mathrm{lb}$ * |
| :--- | :--- | :--- |
| Dead Load: | $\mathrm{PD}=206 \mathrm{lb} *$ |
| Column Self Weight: | $\mathrm{CSW}=18 \mathrm{lb}$ |
| Total Axial Load: | $\mathrm{PT}=1024 \mathrm{lb}$ |
| * Load obtained from | Load Tracker. See Summary Report for details. |

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 1:01:01 PM
(2) $1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 87.5\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	1097 lb
Dead Load: Ve	Vert-DL-Rxn =	342 lb
Total Load: Ve	Vert-TL-Rxn =	1439 lb
COLUMN DATA		
Total Column Length:		
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 8 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:	$y: \quad 0 \mathrm{ft}$	
Column End Condition-K (e):) 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Actual Compressive Stress:	$\mathrm{Fc}=$	87	psi
Allowable Compressive Stress:	$\mathrm{Fc}^{\prime}=$	1053	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	59	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment ($\mathrm{Y}-\mathrm{Y}$ Axis):	My-ey =	59	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$		ft-lb
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\mathrm{My}=$		$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$		psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1170	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$		psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	1170	psi
Combined Stress Factor:	CSF =	0.12	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 2:46:11 PM
$5.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Hem-Fir - Dry Use
Section Adequate By: 93.9\%

VERTICAL REACTIONS		
Live Load:	Vert-LL-Rxn $=600$	lb
Dead Load:	Vert-DL-Rxn $=283 \mathrm{lb}$	
Total Load:	Vert-TL-Rxn $=883 \mathrm{lb}$	

COLUMN DATA		
Total Column Length:	8	ft
Unbraced Length (X-Axis) Lx:	8	ft
Unbraced Length (Y-Axis) Ly:	8	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Hem-Fir

	Base Values	Adjusted	
Compressive Stress:	$\begin{aligned} & \mathrm{FC}=\quad 575 \mathrm{psi} \\ & \mathrm{Cd}=1.00 \quad \mathrm{Cp}=0.86 \end{aligned}$	$\mathrm{Fc}^{\prime}=$	492 psi
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=575 \mathrm{psi} \\ & \mathrm{Cd}=1.00 \mathrm{CF}=1.00 \end{aligned}$	$F b x^{\prime}=$	575 psi
Bending Stress (Y-Y Axis):	$\begin{aligned} & \text { Fby }=575 \mathrm{psi} \\ & \mathrm{Cd}=1.00 \mathrm{CF}=1.00 \end{aligned}$	Fby' =	575 psi
Modulus of Elasticity:	$\mathrm{E}=1100 \mathrm{ksi}$	$\mathrm{E}^{\prime}=$	1100 ksi
Column Section (X-X Axis):		$\mathrm{dx}=$	5.5
Column Section (Y-Y Axis):		dy $=$	5.5
Area:		A =	30.25
Section Modulus (X-X Axis):		Sx =	27.73
Section Modulus (Y-Y Axis):		Sy =	27.73
Slenderness Ratio:		Lex/dx $=$	= 17.45
		Ley/dy	$=17.45$

Column Calculations (Controlling Case Only):

Actual Compressive Stress:	$\mathrm{Fc}=$	29	ps
Allowable Compressive Stress:	Fc' $=$	492	psi
Eccentricity Moment (X-X Axis):	Mx -ex $=$	35	ft -Ib
Eccentricity Moment (Y-Y Axis):	My-ey =	35	$\mathrm{ft-lb}$
Moment Due to Lateral Loads (X-X Axis):	Mx =	0	ft -lb
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\mathrm{My}=$	0	ft-lb
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	575	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$	0	psi
Allowable Bending Stress ($\mathrm{Y}-\mathrm{Y}$ Axis):	Fby' =	575	ps
Combined Stress Factor:	CSF =	0.06	

AXIAL LOADING

Live Load: $\quad \mathrm{PL}=600 \mathrm{lb}$ *
Dead Load: $\quad \mathrm{PD}=238 \mathrm{lb}$ *
Column Self Weight: CSW = 45 lb
Total Axial Load: \quad PT $=883 \mathrm{lb}$

* Load obtained from Load Tracker. See Summary Report for details.

DESCRIPTION: HDR 1 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021

General Information

Brace condition for deflection (buckling) along columns :
$X-X$ (width) axis : Fully braced against buckling ABOUT Y-Y Axis
$Y-Y$ (depth) axis: Unbraced Length for buckling ABOUT X-X Axis $=7 \mathrm{ft}, \mathrm{K}$

Applied Loads

Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 1 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=1.219, \mathrm{~S}=1.781 \mathrm{k}$
HDR 1: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.1590, \mathrm{~L}=0.0610 \mathrm{k}$

DESIGN SUMMARY

Maximum Reactions							Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top		k	Y-Y Axis Reaction @ Base @ Top		Axial Reaction @ Base	$\begin{gathered} \text { My - Eno } \\ \text { @ Bas } \end{gathered}$	ments k-ft @ Top	Mx - End @ Base	Moments @ Top
D Only	-0.008	0.008		-0.008	0.008	1.391				
+D+L	-0.009	0.009		-0.009	0.009	1.452				
+D+S	-0.019	0.019		-0.019	0.019	3.172				
+D+0.750L	-0.008	0.008		-0.008	0.008	1.436				
+D+0.750L+0.750S	-0.016	0.016		-0.016	0.016	2.772				
+0.60D	-0.005	0.005		-0.005	0.005	0.834				
L Only	-0.000	0.000		-0.000	0.000	0.061				
S Only	-0.011	0.011		-0.011	0.011	1.781				

DESCRIPTION: HDR 2 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021
General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 2 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.660, \mathrm{~S}=0.9540 \mathrm{k}$
HDR 2: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.1760, \mathrm{~L}=0.2220 \mathrm{k}$

DESIGN SUMMARY

DESCRIPTION: HDR 3 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021

General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 3 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.4750, \mathrm{~S}=0.6810 \mathrm{k}$
HDR 3: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.1260, \mathrm{~L}=0.1590 \mathrm{k}$

DESIGN SUMMARY

Maximum Reactions							Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction		k	Y-Y Axis Reaction @ Base @ Top		Axial Reaction @ Base	$\begin{gathered} \text { My - Eno } \\ \text { @ Bas } \end{gathered}$	ments @ Top	Mx - End @ Base	Moments @ Top
D Only	-0.004	0.004		-0.004	0.004	0.614				
+D+L	-0.005	0.005		-0.005	0.005	0.773				
+D+S	-0.008	0.008		-0.008	0.008	1.295				
+D+0.750L	-0.004	0.004		-0.004	0.004	0.733				
+D+0.750L+0.750S	-0.007	0.007		-0.007	0.007	1.244				
+0.60D	-0.002	0.002		-0.002	0.002	0.368				
L Only	-0.001	0.001		-0.001	0.001	0.159				
S Only	-0.004	0.004		-0.004	0.004	0.681				

DESCRIPTION: HDR 4 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021

General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 4 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.9730, \mathrm{~S}=1.426 \mathrm{k}$
HDR 4: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.2980, \mathrm{~L}=0.7470 \mathrm{k}$

DESIGN SUMMARY

Bending \& Shear Check Results		
PASS	Max. Axial+Bending Stress Ratio	$0=0.7665: 1$
	Load Combination	+D+0.750L+0.750S
	Governing NDS Formotap + Mxx +	+ Myy, NDS Eq. 3.9-
	Location of max.above base	6.953 ft
	At maximum location values are	
	Applied Axial	2.913 k
	Applied Mx	-0.1201 k-ft
	Applied My	-0.1201 k-ft
	Fc : Allowable	1,279.47 psi
PASS	Maximum Shear Stress Ratio = Load Combination	$\begin{array}{r} \mathbf{0 . 0 1 5 1 7 : 1} \\ +D+0.750 L+0.750 \mathrm{~S} \end{array}$
	Location of max.above base	7.0 ft
	Applied Design Shear	3.139 psi
	Allowable Shear	207.0 psi

Maximum SERVICE Lateral Load Reactions . .

Top along Y-Y	0.01727 k	Bottom along Y-Y	0.01727 k
Top along X-X	0.01727 k	Bottom along X-X	0.01727 k

Maximum SERVICE Load Lateral Deflections . . .

Along Y-Y $\quad-0.01990$ in at 4.087 ft above base for load combination: $+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}$
Along X-X $\quad-0.2675$ in at 4.087 ft above base for load combination : +D+0.750L+0.750S
Other Factors used to calculate allowable stresses ...
Bending Compression Tension

Maximum Reactions							Note: Only non-zero reactions are listed.	
Load Combination	X-X Axis R @ Base	Reaction @ Top	k	Y-Y Axis @ Base	Reaction @ Top	Axial Reaction @ Base	My - End Moments k-ft @ Base @ Top	Mx - End Moments @ Base @ Top
D Only	-0.008	0.008		-0.008	0.008	1.284		
+D+L	-0.012	0.012		-0.012	0.012	2.031		
+D+S	-0.016	0.016		-0.016	0.016	2.710		
+D+0.750L	-0.011	0.011		-0.011	0.011	1.844		
+D+0.750L+0.750S	-0.017	0.017		-0.017	0.017	2.913		
+0.60D	-0.005	0.005		-0.005	0.005	0.770		
L Only	-0.004	0.004		-0.004	0.004	0.747		
S Only	-0.008	0.008		-0.008	0.008	1.426		

DESCRIPTION: HDR 5 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021

General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 5 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.8360, \mathrm{~S}=1.223 \mathrm{k}$
HDR 5: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.1810, \mathrm{~L}=0.3630 \mathrm{k}$

DESIGN SUMMARY

Maximum Reactions							Note: Only non-zero reactions are listed.		
Load Combination	X-X Axis Reaction		k	Y-Y Axis Reaction		Axial Reaction @ Base	My - End Moments k-ft @ Base @ Top	Mx - End M @ Base	Moments @ Top
D Only	-0.006	0.006		-0.006	0.006	1.030			
+D+L	-0.008	0.008		-0.008	0.008	1.393			
+D+S	-0.013	0.013		-0.013	0.013	2.253			
+D+0.750L	-0.008	0.008		-0.008	0.008	1.302			
+D+0.750L+0.750S	-0.013	0.013		-0.013	0.013	2.219			
+0.60D	-0.004	0.004		-0.004	0.004	0.618			
L Only	-0.002	0.002		-0.002	0.002	0.363			
S Only	-0.007	0.007		-0.007	0.007	1.223			

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333

StruCalc Version 10.0.1.6
12/5/2022 2:57:37 PM
Section Adequate By: 74.8\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	840 lb
Dead Load: Ve	Vert-DL-Rxn =	621 lb
Total Load: Ve	Vert-TL-Rxn =	1461 lb
COLUMN DATA		
Total Column Length:		
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 7 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:		
Column End Condition-K (e):) 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES
\#2-Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L+D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	139	psi
Allowable Compressive Stress:	$\mathrm{Fc}=$	709	psi
Eccentricity Moment (X-X Axis):	$\mathrm{Mx}-\mathrm{ex}=$	60	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My -ey $=$	60	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	$\mathrm{Fbx}=$	1350	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	$\mathrm{Fby}=$	0	psi
Allowable Bending Stress (Y-Y Axis):	$\mathrm{Fby}=$	1350	psi
Combined Stress Factor:	$\mathrm{CSF}=$	$\mathbf{0 . 2 5}$	

AXIAL LOADING

| Live Load: | $\mathrm{PL}=840 \mathrm{lb}{ }^{*}$ |
| :--- | :--- | :--- |
| Dead Load: | $\mathrm{PD}=605 \mathrm{lb}{ }^{*}$ |
| Column Self Weight: | $\mathrm{CSW}=16 \mathrm{lb}$ |
| Total Axial Load: | $\mathrm{PT}=1461 \mathrm{lb}$ |
| * Load obtained from | Load Tracker. See Summary Report for details. |

```
12/6/2022
Project:}22-0411 Cross Creek - 2 Story
```

 UPPER FLOOR FRAMING CONNECTIONS
 DECK LEDGER
LOAD = (40 PSF + 12 PSF)(2.5')(1.33')
LOAD $=173 \mathrm{LB}$
1/4" X 3 1/2" SDS CAPACITY = 340 LB > 173 LB

```
STAIR LEDGER
LOAD = (100 PSF + 25 PSF)(4')(1.33')
LOAD = 665 LB
(2) 1/4" X 3 1/2" SDS CAPACITY = 680 LB > 665 LB
```

DECK JOISTS TO LEDGER
RXN = 173 LB
LU28 CAPACITY $=955$ LB >173 LB

STAIR JOISTS TO LEDGER

RXN $=666$ LB
LU210 CAPACITY $=1195$ LB $>666 \mathrm{LB}$

```
FB1 TO FB2
```

RXN $=1006$ LB
HUC212-2 CAPACITY = 2385 LB > 1006 LB

```
FB2 TO WALL
RXN = 1450 LB
(3) 3/4" BOLT CAPACITY = (3)*(500 LB)
(3) 3/4" BOLT CAPACITY = 1500 LB > 1450 LB
```


Project: 22-0411 2-STORY
Location: TYP EXTERIOR FOOTINGS
Footing
[2015 International Building Code(2015 NDS)]
Footing Size: 18.0 IN Wide x 8.0 IN Deep Continuous Footing With 6.0 IN Thick
x 18.0 IN Tall Stemwall
LongitudinalReinforcement: (2) Continuous \#4 Bars
TransverseReinforcement: \#4 Bars @ 12.00 IN. O.C. (unnecessary)
Section Footing Design Adequate

FOOTING PROPERTIES	
Allowable Soil Bearing Pressure:	Qs $=1500 \mathrm{psf}$
Concrete Compressive Strength:	F'c = 2500 psi
Reinforcing Steel Yield Strength:	Fy $=40000 \mathrm{psi}$
Concrete Reinforcement Cover:	$\mathrm{c}=3 \mathrm{in}$
FOOTING SIZE	
Width:	$\mathrm{W}=18 \mathrm{in}$
Depth:	Depth = 8 in
Effective Depth to Top Layer of Steel:	$\mathrm{d}=4.25$ in

STEMWALL SIZE	
Stemwall Width:	6 in
Stemwall Height:	18 in
Stemwall Weight:	150 pcf

FOOTING CALCULATIONS

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 12:23:14 PM

LOADING DIAGRAM

Project: 22-0411 2-STORY
Location: TYP INTERIOR FOOTINGS
Footing
[2015 International Building Code(2015 NDS)]
Footing Size: 18.0 IN Wide x 8.0 IN Deep Continuous Footing
LongitudinalReinforcement: (2) Continuous \#4 Bars
TransverseReinforcement: \#4 Bars @ 12.00 IN. O.C. (unnecessary)
Section Footing Design Adequate

FOOTING PROPERTIES		
Allowable Soil Bearing Pressure:	Qs $=1500 \mathrm{psf}$	
Concrete Compressive Strength:	F'c $=r 2500 \mathrm{psi}$	
Reinforcing Steel Yield Strength:	Fy $=40000 \mathrm{psi}$	
Concrete Reinforcement Cover:	$\mathrm{c}=$	3 in
FOOTING SIZE		
Width:	W $=$	18 in
Depth:	Depth $=$	8 in
Effective Depth to Top Layer of Steel:	$\mathrm{d}=$	4.25 in

STEMWALL SIZE	
Stemwall Width:	0 in
Stemwall Height:	0 in
Stemwall Weight:	150 pcf

FOOTING CALCULATIONS

Bearing Calculations:

Ultimate Bearing Pressure:	Qu =	895 psf
Effective Allowable Soil Bearing Pressure:	$\mathrm{Qe}=$	1400 psf
Width Required:	Wreq =	0.96 ft
Beam Shear Calculations (One Way Shear):		
Beam Shear:	Vu1 =	498 lb
Allowable Beam Shear:	Vc1 $=$	3825 lb
Transverse Direction:		
Bending Calculations:		
Factored Moment:	$\mathrm{Mu}=$	4244 in-
Nominal Moment Strength:	$\mathrm{Mn}=$	0
Reinforcement Calculations:		
Concrete Compressive Block Depth:	$\mathrm{a}=$	0.30 in
Steel Required Based on Moment:	As(1) =	0.03 in2
Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.4	As(2) =	0.19 in2
Controlling Reinforcing Steel:	As-reqd =	0.19 in2
Selected Reinforcement: Trans:	\#4's @ 1	0 in . o.c.
Reinforcement Area Provided:	As =	0.19 in2
Development Length Calculations:		
Development Length Required:	Ld =	15 in
Development Length Supplied:	Ld-sup =	6 in

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 4:01:30 PM

Ld-sup $=6$ in
Note: Plain concrete adequate for bending,
therefore adequate development length not required.
Longitudinal Direction:

Reinforcement Calculations:

Min. Code Req'd Reinf. Shrink./Temp. (ACl-10.5.4): As(2) $=0.29$ in2
Controlling Reinforcing Steel:
Selected Reinforcement:
Reinforcement Area Provided:

As-reqd $=0.29 \mathrm{in} 2$
Longitudinal: (2) Cont. \#4 Bars
As $=0.39 \mathrm{in} 2$

LOADING DIAGRAM

FOOTING LOADING

Live Load:	$\mathrm{PL}=690$ plf
Dead Load:	$\mathrm{PD}=652 \mathrm{plf}$
Total Load:	$\mathrm{PT}=1342 \mathrm{plf}$
Ultimate Factored Load:	$\mathrm{Pu}=1886$ plf

Project: 22-0411 2-STORY
Location: STAIR FOOTINGS
Footing
[2015 International Building Code(2015 NDS)]
Footing Size: 16.0 IN Wide x 8.0 IN Deep Continuous Footing
LongitudinalReinforcement: (2) Continuous \#4 Bars
TransverseReinforcement: \#4 Bars @ 12.00 IN. O.C. (unnecessary)
Section Footing Design Adequate

FOOTING PROPERTIES	
Allowable Soil Bearing Pressure:	Qs $=1500 \mathrm{psf}$
Concrete Compressive Strength:	F'c $=2500 \mathrm{psi}$
Reinforcing Steel Yield Strength:	Fy $=40000 \mathrm{psi}$
Concrete Reinforcement Cover:	$\mathrm{C}=$
FOOTING SIZE	
Width:	W $=$
Depth:	Depth $=$
Effective Depth to Top Layer of Steel:	d $=$

STEMWALL SIZE	
Stemwall Width:	0 in
Stemwall Height:	0 in
Stemwall Weight:	150 pcf

FOOTING CALCULATIONS

Bearing Calculations:

Ultimate Bearing Pressure:	Qu $=$	596 psf
Effective Allowable Soil Bearing Pressure:	Qe =	1400 psf
Width Required:	Wreq =	0.57 ft
Beam Shear Calculations (One Way Shear):		
Beam Shear:	Vu1 =	261 lb
Allowable Beam Shear:	Vc1 $=$	3825 lb
Transverse Direction:		
Bending Calculations:		
Factored Moment:	$\mathrm{Mu}=$	2228 in-lb
Nominal Moment Strength:	$\mathrm{Mn}=$	$0 \mathrm{in}-\mathrm{lb}$
Reinforcement Calculations:		
Concrete Compressive Block Depth:	$\mathrm{a}=$	0.30 in
Steel Required Based on Moment:	As(1) =	0.01 in2
Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.4)	As(2) =	0.19 in2
Controlling Reinforcing Steel:	As-reqd =	0.19 in2
Selected Reinforcement: Trans:	\#4's @ 12,	in. o.c.
Reinforcement Area Provided:	As =	0.19 in2
Development Length Calculations:		
Development Length Required:	Ld =	15 in
Development Length Supplied:	Ld-sup =	5 in

Longitudinal Direction:

Reinforcement Calculations:

Min. Code Req'd Reinf. Shrink./Temp. (ACl-10.5.4): As(2) $=0.26$ in2
Controlling Reinforcing Steel:
Selected Reinforcement:
Reinforcement Area Provided:

As-reqd $=0.26$ in2
Longitudinal: (2) Cont. \#4 Bars

$$
\text { As }=\quad 0.39 \mathrm{in} 2
$$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 12:23:49 PM

Project: 22-0411 2-STORY
Location: DECK FOOTINGS
Footing
[2015 International Building Code(2015 NDS)]
Footing Size: 1.5 FT x 1.5 FT x 12.00 IN
Reinforcement: \#4 Bars @ 5.75 IN. O.C. E/W / (3) min.
Section Footing Design Adequate

FOOTING PROPERTIES		
Allowable Soil Bearing Pressure:	Qs $=1500 \mathrm{psf}$	
Concrete Compressive Strength:	F'c $=2500 \mathrm{psi}$	
Reinforcing Steel Yield Strength:	$\mathrm{Fy}=40000 \mathrm{psi}$	
Concrete Reinforcement Cover:	$\mathrm{C}=$	3 in
FOOTING SIZE		
Width:	$\mathrm{W}=$	1.5 ft
Length:	$\mathrm{L}=$	1.5 ft
Depth:	Depth $=12 \mathrm{in}$	
Effective Depth to Top Layer of Steel:	$\mathrm{d}=$	8.25 in

COLUMN AND BASEPLATE SIZE	
Column Type:	Wood
Column Width:	$\mathrm{m}=5.5 \mathrm{in}$
Column Depth:	$\mathrm{n}=5.5 \mathrm{in}$

FOOTING CALCULATIONS

Bearing Calculations:		
Ultimate Bearing Pressure:	Qu =	392 psf
Effective Allowable Soil Bearing Pressure:	Qe $=$	1350 psf
Required Footing Area:	Areq =	0.65 sf
Area Provided:	$\mathrm{A}=$	2.25 sf
Baseplate Bearing:		
Bearing Required:	Bear $=$	1300 lb
Allowable Bearing:	Bear-A =	83566 lb
Beam Shear Calculations (One Way Shear):		
Beam Shear:	Vu1 =	54 lb
Allowable Beam Shear:	Vc1 =	11138 lb
Punching Shear Calculations (Two Way Shear):		
Critical Perimeter:	Bo =	55 in
Punching Shear:	Vu2 $=$	541 lb
Allowable Punching Shear (ACI 11-35):	vc2-a $=$	102094 lb
Allowable Punching Shear (ACI 11-36):	vc2-b $=$	136125 lb
Allowable Punching Shear (ACI 11-37):	vc2-c =	68063 lb
Controlling Allowable Punching Shear:	$\mathrm{vc} 2=$	68063 lb
Bending Calculations:		
Factored Moment:	$\mathrm{Mu}=$	2924 in-lb
Nominal Moment Strength:	$\mathrm{Mn}=$	168334 in-lb
Reinforcement Calculations:		
Concrete Compressive Block Depth:	$\mathrm{a}=$	0.62 in
Steel Required Based on Moment:	As(1) $=$	0.01 in2
Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.4):	As(2) =	0.43 in2
Controlling Reinforcing Steel:	As-reqd =	0.43 in2
Selected Reinforcement: \#4's @ 5.8	in. o.c. e/w	(3) Min.
Reinforcement Area Provided:	As $=$	0.59 in2
Development Length Calculations:		
Development Length Required:	Ld =	15 in
Development Length Supplied:	Ld-sup =	6 in

floor ive Looos:

 WOOD FAME SHEARNALLS

SOIL NOTES

WOOD GENERAL NOTES

¢.

. sillatin

CONCRETE NOTES

 0. Conracto sini ivirux
 MAXXWM WATER.C.EMENT TATIO 0.49

 concerte acoregrie shall coneoru to astu c. 33

 MRREGATEO

 Concrete specal wspectov reourew wits

CODE SUMMARY

Peh talle foad.1.1 maxmum floor afea per occurant

(A) FRONT ELEVATION

(C) BACK ELEVATION

(B) LEFT ELEVATION

(A) RIGHT ELEVATION

A FIRST FLOOR LAYOUT

(B) SECOND FLOOR LAYOUT

A. TYPICAL INTERIOR WALL SECTION

(A2.2) TYPICAL EXTERIOR WALL SECTION (JOISTS PERP.)

FLOOR FRAMING NOTES:

ROOF FRAMING NOTES:
A ROOF FRAMING PLAN

(B) GIRDER TRUSS ATTACHEMENT DETAIL

(A (FI FIRT FLOOR SHEARWALL PLAN shear wall scheoules

Notesi

9.) 10.

C SHEARWALL SILL BOLT DETAIL
(D) WAL TO WALL HOLDOWN (TYP.)

CROSS CREEK DEVELOPMENT 3 STORY

2315 N ROOSEVELT DR. SEASIDE, OREGON

DECEMBER $20^{\text {TH }}, 2022$
JOB\# 22-0411

STRUCTURAL CALCULATIONS

BY

A
This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.
(1) The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why,

A1. Hazards by Location

Search Information

Coordinates:	$46.00950363610217,-123.91231199529268$	
Elevation:	15 ft	
Timestamp:	$2022-09-09 \mathrm{~T} 18: 34: 24.752 \mathrm{ft}$	
Hazard Type:	Seismic	
Reference ASCE7-16 Document: Google Risk Category: II Site Class: D		

Basic Parameters

Name	Value	Description
S_{S}	1.294	MCE $_{\mathrm{R}}$ ground motion (period=0.2s)
S_{1}	0.679	MCE $_{\mathrm{R}}$ ground motion (period=1.0s)
S_{MS}	1.294	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	${ }^{*}$ null	Site-modified spectral acceleration value
S_{DS}	0.862	Numeric seismic design value at 0.2 s SA
$\mathrm{S}_{\mathrm{D} 1}$	${ }^{*}$ null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

-Additional Information

Name	Value	Description
SDC	* null	Seismic design category
F_{a}	1	Site amplification factor at 0.2 s
$\mathrm{~F}_{\mathrm{v}}$	${ }^{*}$ null	Site amplification factor at 1.0 s
CR_{S}	0.862	Coefficient of risk (0.2s)
CR_{1}	0.854	Coefficient of risk (1.0s)
PGA	0.65	MCE
F peak ground acceleration		
$\mathrm{F}_{\mathrm{PGA}}$	1.1	Site amplification factor at PGA

PGA $_{M}$	0.715	Site modified peak ground acceleration
T_{L}	16	Long-period transition period (s)
SsRT	1.294	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.501	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
SsD	1.86	Factored deterministic acceleration value (0.2s)
S1RT	0.679	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.796	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years) S1D
PGAd	0.967	Factored deterministic acceleration value (1.0s)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

STABILITY A
 ENGINEERING inc.

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223 .5360 f: 541.223 .5278

Determine Base Shear
*ASCE 7-16 Section 12.8

STABILITY A完
 ENGINEERING ${ }_{\text {inc. }}$

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

Definitions

L: Wall Length	$\mathrm{H}_{\text {max: }}$: Opening height	$\mathrm{V}_{\text {wind }}$: Wind Shear
D: Door Length	W : Window Length	$H D_{\text {wind }}$: Hold-Down Force(wind)

$\mathrm{V}_{\text {seis }}$: Seismic Shear
$\mathrm{FR}_{\text {trib: }}$: Framing Tributary Width
$H D_{\text {seis }}$: Hold-Down Force(seismic)

Project: 22-0411 Cross Creek 3-Story
Loading Direction: F-B Loading Area: RIGHT WALL

Date: 121622 STABILITY
Name: ${ }^{\text {mв }}$ ENGINEERING ${ }_{\text {Inc. }}$
P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

WALL DESIGN

Definitions
L: Wall Length
D: Door Length W: Window Length
$\mathrm{V}_{\text {wind }}$: Wind Shear
$H D_{\text {wind }}$: Hold-Down Force(wind)
$\mathrm{V}_{\text {seis }}$: Seismic Shear
$H D_{\text {seis }}$: Hold-Down Force(seismic)
$\mathrm{FR}_{\text {trib }}$: Framing Tributary Width Load Combo: . $6 \mathrm{D}+.7 \mathrm{E}, .6 \mathrm{D}+\mathrm{W}$

STABILITY A
 ENGINEERING inc.

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

STABILITY \& ENGINEERING inc.

P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

Project: 22-0411 Cross Creek 3-Story
Loading Direction: L-R Loading Area: BACK WALL

Date: 1217722 STABILITY
Name: ${ }^{\text {MB }}$ ENGINEERING ${ }_{\text {Inc. }}$
P.O. Box 2646 Corvallis, Oregon 97339
p: 541.223.5360 f: 541.223.5278

Definitions
L: Wall Length
D: Door Length
$\mathrm{H}_{\text {max }}$: Opening height
$\mathrm{V}_{\text {wind }}$: Wind Shear
$\mathrm{HD}_{\text {wind: }}$: Hold-Down Force(wind)
$V_{\text {seis }}$: Seismic Shear
$H D_{\text {seis }}$: Hold-Down Force(seismic)
$\mathrm{FR}_{\text {tribib }}$: Framing Tributary Width Load Combo: . $6 \mathrm{D}+.7 \mathrm{E}, .6 \mathrm{D}+\mathrm{W}$

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Strong4tie
 Software
 Version 3.0.7947.0

Company:	Stability Engineering	Date:	$9 / 12 / 2022$
Engineer:	M. Beaudoin	Page:	$1 / 5$
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Osburn Olson LLC
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB
Diameter (inch): 1.125
Effective Embedment depth, hef (inch): 15.000
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 17.75
$\mathrm{C}_{\text {min }}$ (inch): 6.75
$\mathrm{S}_{\text {min }}$ (inch): 6.75

Project description:
Location: HD19 Anchors
Fastening description:

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 18.00
State: Uncracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\text {c, }, \mathrm{V}:} 1.0$
Reinforcement condition: B tension, B shear
Supplemental reinforcement: No
Reinforcement provided at corners: No
Ignore concrete breakout in tension: No
Ignore concrete breakout in shear: No
Ignore 6do requirement: No
Build-up grout pad: No

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB9 (1 1/8"Ø)

SIMPSON
 Anchor Designer ${ }^{\text {TM }}$
 Software
 Version 3.0.7947.0

Company:	Stability Engineering	Date:	9/12/2022
Engineer:	M. Beaudoin	Page:	$2 / 5$
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: not set
Seismic design: No
Anchors subjected to sustained tension: Not applicable
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No
Strength level loads:
Nua [Ib]: 24667
$V_{\text {uax }}$ [lb]: 0
$V_{\text {uay }}$ [lb]: 0
<Figure 1>

SIMPSON
 Anchor Designer ${ }^{\text {TM }}$ Software
 Version 3.0.7947.0

Company:	Stability Engineering	Date:	$9 / 12 / 2022$
Engineer:	M. Beaudoin	Page:	$3 / 5$
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

<Figure 2>

SIMPSON Anchor DesignerTM Software
 Version 3.0.7947.0

Company:	Stability Engineering	Date:	9/12/2022
Engineer:	M. Beaudoin	Page:	$4 / 5$
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $\left.V_{(\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	24667.0	0.0	0.0	0.0
Sum	24667.0	0.0	0.0	0.0

Maximum concrete compression strain (\%o): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 24667
Resultant compression force (b): 0
Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}($ Ib $)$	ϕ	$\phi N_{\text {sa }}$ (Ib)
44255	0.75	33191

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)
$N_{b}=16 \lambda_{a} \sqrt{ } f_{c}^{\prime} h_{e f}^{5 / 3}$ (Eq. 17.4.2.2b)

λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	$h_{e f}(\mathrm{in})$	$N_{b}(\mathrm{lb})$
1.00	2500	10.667	41350

$\phi N_{c b}=\phi\left(A_{n c} / A_{N c o}\right) \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. 17.3.1 \& Eq. 17.4.2.1a)

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$C_{a, \min }($ in $)$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c \rho, N}$	$N_{b}(\mathrm{lb})$	ϕ	$\phi N_{c b}(\mathrm{lb})$
1024.00	1024.00	16.00	1.000	1.25	1.000	41350	0.70	36181

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\phi N_{p n}=\phi \Psi_{c, P} N_{p}=\phi \Psi_{c, P} 8 A_{b r g} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{b r g}\left(\right.$ in $\left.^{2}\right)$	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$\phi N_{\text {pn }}(\mathrm{lb})$
1.4	6.37	2500	0.70	124852

Company:	Stability Engineering	Date:	9/12/2022
Engineer:	M. Beaudoin	Page:	$5 / 5$
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

11. Results				
11. Interaction of Tensile and Shear Forces (Sec. D.7)?				
Tension	Factored Load, ${ }^{\text {ua (}}$ (b)	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}$ (lb$)$	Ratio	Status
Steel	24667	33191	0.74	Pass (Governs)
Concrete breakout	24667	36181	0.68	Pass
Pullout	24667	124852	0.20	Pass

PAB9 (1 1/8"Ø) with hef = 15.000 inch meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON Anchor DesignerTM
 Software
 Version 3.0.7947.0

Company:	Stability Engineering	Date:	$9 / 12 / 2022$
Engineer:	M. Beaudoin	Page:	$1 / 5$
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Osburn Olson LLC
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB
Diameter (inch): 1.000
Effective Embedment depth, hef (inch): 13.000
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 15.63
$\mathrm{C}_{\text {min }}$ (inch): 6.00
$\mathrm{S}_{\text {min }}$ (inch): 6.00

Project description:
Location: HDU14 Anchors
Fastening description:

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 16.00
State: Uncracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\text {c,v: }} 1.0$
Reinforcement condition: B tension, B shear
Supplemental reinforcement: No
Reinforcement provided at corners: No
Ignore concrete breakout in tension: No
Ignore concrete breakout in shear: No
Ignore 6do requirement: No
Build-up grout pad: No

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB8 (1"Ø)

SIMPSON Anchor Designer ${ }^{\text {TM }}$
Strong4tie
Software
Version 3.0.7947.0

Company:	Stability Engineering	Date:	9/12/2022
Engineer:	M. Beaudoin	Page:	$2 / 5$
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: not set
Seismic design: No
Anchors subjected to sustained tension: Not applicable
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No
Strength level loads:
Nua [Ib]: 21333
$V_{\text {uax }}$ [lb]: 0
$V_{\text {uay }}$ [lb]: 0
<Figure 1>

SIMPSON
 Anchor Designer ${ }^{\text {TM }}$ Software
 Version 3.0.7947.0

Company:	Stability Engineering	Date:	9/12/2022
Engineer:	M. Beaudoin	Page:	3/5
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

<Figure 2>

SIMPSON Anchor DesignerTM Software
 Version 3.0.7947.0

Company:	Stability Engineering	Date:	9/12/2022
Engineer:	M. Beaudoin	Page:	$4 / 5$
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $\left.V_{(\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	21333.0	0.0	0.0	0.0
Sum	21333.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 21333
Resultant compression force (b): 0
Eccentricity of resultant tension forces in x-axis, e' $N \times$ (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}$ (bb)	ϕ	$\phi N_{\text {sa }}$ (b)
35150	0.75	26363

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)
$N_{b}=16 \lambda_{a} \sqrt{ } f_{c} c h e f^{5 / 3}$ (Eq. 17.4.2.2b)

λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	$h_{e f}(\mathrm{in})$	$N_{b}(\mathrm{lb})$
1.00	2500	8.000	25600

$\phi N_{c b}=\phi\left(A_{n c} / A_{N c o}\right) \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. 17.3.1 \& Eq. 17.4.2.1a)

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$C_{a, \text { min }}($ in $)$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c \rho, N}$	$N_{b}(\mathrm{lb})$	ϕ	$\phi N_{c b}(\mathrm{lb})$
576.00	576.00	12.00	1.000	1.25	1.000	25600	0.70	22400

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\phi N_{p n}=\phi \Psi_{c, P} N_{p}=\phi \Psi_{c, P} 8 A_{b r g} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{\text {brg }}\left(\right.$ in $\left.^{2}\right)$	$f_{c}^{\prime}($ psi $)$	ϕ	$\phi N_{\text {pn }}(\mathrm{lb})$
1.4	5.15	2500	0.70	101018

Company:	Stability Engineering	Date:	9/12/2022
Engineer:	M. Beaudoin	Page:	$5 / 5$
Project:	22-0411 Cross Creek 3-Story		
Address:			
Phone:			
E-mail:			

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?				
Tension	Factored Load, Nua (lb)	Design Strength, $\varnothing N_{n}(\mathrm{lb})$	Ratio	0.81
Steel	21333	26363	$\mathbf{0 . 9 5}$	Status
Concrete breakout	21333	22400	0.21	Pass (Governs)
Pullout	21333	101018	Pass	

PAB8 (1"Ø) with hef $=13.000$ inch meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

9/9/2022 Project: 22 -0411 Cross Creek - 3 Story						
OUT OF PLANE CHECKS						
8' STUD CHECK H = 8'-0" LOAD $=25.2$ PSF AT 16" O.C.						
				By: Max Beaudoin		
8' SINGLE KING STUD				KEY:	(ZONE C)	
H = 8'-0'	TRIB WIDTH =	5.67	FT	WIND LOAD $=$	42	PSF
	LOAD =	143	PLF	WIND LOAD ${ }_{\text {ASD }}=$	25.2	PSF
*MAX WIDTH = 10' > ALL OPENINGS						

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333

StruCalc Version 10.0.1.6
12/17/2022 3:38:56 PM
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 80.3\%

DEFLECTIONS				
Deflection due to lateral loads only:	Defl $=0.09 \mathrm{IN}$		L/1040	
Live Load Deflection Criteria:			L/180	
VERTICAL REACTIONS				
Live Load:	Vert-LL-Rxn =		0	lb
Dead Load:	Vert-DL-Rxn $=$		14	lb
Total Load:	Vert-TL-Rxn =			lb
HORIZONTAL REACTIONS				
Total Reaction at Top of Column:	TL-Rxn-Top =			lb
Total Reaction at Bottom of Column:	TL-Rxn-Bottom =		133	lb
COLUMN DATA				
Total Column Length:				
Unbraced Length (X-Axis) Lx:	8 ft			
Unbraced Length (Y-Axis) Ly:	0 ft			
Column End Condition-K (e):	1			
Axial Load Duration Factor	1.00			
Lateral Load Duration Factor (Wind/S	Seismic) 1.60			

STUD PROPERTIES

Stud Calculations (Controlling Case Only):

LOADING DIAGRAM

AXIAL LOADING

Live Load:	$\mathrm{PL}=$	0 plf
Dead Load:	$\mathrm{PD}=$	0 plf
Column Self Weight:	$\mathrm{CSW}=14 \mathrm{plf}$	
Total Axial Load:	$\mathrm{PT}=\quad 14 \mathrm{plf}$	
LATERAL LOADING	(Dy Face)	
Uniform Lateral Load:	wL-Lat $=25$ psf	

Controlling Load Case: Axial Dead Load and Lateral loads (D + W or E)

Actual Compressive Stress:	$\mathrm{Fc}=$	2	psi
Allowable Compressive Stress:	Fc' $=$	1272	i
Eccentricity Moment (X-X Axis):	$\mathrm{Mx}-\mathrm{ex}=$	0	ft -lb
Eccentricity Moment (Y-Y Axis):	My-ey =	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	267	ft-lb
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	ft -lb
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	423	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	2153	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =	0	psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	2153	psi
Combined Stress Factor:	CSF =	0.2	

Max Beaudoin
Stability Engineering Inc.
(77 NE 2nd Street
Corvallis OR 97333

StruCalc Version 10.0.1.6
12/17/2022 3:40:32 PM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 2.9\%

DEFLECTIONS				
Deflection due to lateral loads only:	Defl $=0.4 \mathrm{IN}=\mathrm{L} / 242$			
Live Load Deflection Criteria:	/180			
VERTICAL REACTIONS				
Live Load:	Vert-LL-Rxn =		0	lb
Dead Load:	Vert-DL-Rxn =		14	lb
Total Load:	Vert-TL-Rxn $=$		14	lb
HORIZONTAL REACTIONS				
Total Reaction at Top of Column:	TL-Rxn-Top =		572	lb
Total Reaction at Bottom of Column:	TL-Rxn-Bottom =		572	lb
COLUMN DATA				
Total Column Length:				
Unbraced Length (X-Axis) Lx:	8			
Unbraced Length (Y-Axis) Ly:				
Column End Condition-K (e):	1			
Axial Load Duration Factor	1.00			
Lateral Load Duration Factor (Wind/S	Seismic) 1.60			

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):
Controlling Load Case: Axial Dead Load and Lateral loads (D + W or E)

Actual Compressive Stress:	$\mathrm{Fc}=$	2	psi
Allowable Compressive Stress:	$\mathrm{Fc}=$	1272	psi
Eccentricity Moment (X-X Axis):	$\mathrm{Mx}-\mathrm{ex}=$	0	$\mathrm{ft-lb}$
Eccentricity Moment (Y-Y Axis):	$\mathrm{My}-\mathrm{ey}=$	0	$\mathrm{ft-lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	1144	$\mathrm{ft-lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft-lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	1815	psi
Allowable Bending Stress (X-X Axis):	$\mathrm{Fbx}=$	1872	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$	0	psi
Allowable Bending Stress (Y-Y Axis):	$\mathrm{Fby}=$	1872	psi
Combined Stress Factor:	CSF =	0.97	

LOADING DIAGRAM

AXIAL LOADING

Live Load:	$\mathrm{PL}=$	0 lb
Dead Load:	$\mathrm{PD}=$	0 lb
Column Self Weight:	$\mathrm{CSW}=14 \mathrm{lb}$	
Total Axial Load:	$\mathrm{PT}=$	14 lb
LATERAL LOADING	(Dy Face)	
Uniform Lateral Load:	wL-Lat $=143 \mathrm{plf}$	

ROOF FRAMING GUIDE

Project: 22-0411 3-STORY
Location: UHDR 1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 4.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 48.8\%
Controlling Factor: Moment

POINT LOADS - CENTER SPAN
Load Number One
Live Load 1793 lb
Dead Load 1195 lb
Location $\quad 1.75 \mathrm{ft}$

TRAPEZOIDAL LOADS - CENTER SPAN			
Load Number	$\underline{\text { One }}$	Two	
Left Live Load	92 plf	551 plf	
Left Dead Load	61 plf	367 plf	
Right Live Load	92 plf	551 plf	
Right Dead Load	61 plf	367 plf	
Load Start	0 ft	1.75 ft	
Load End	1.75 ft	4.5 ft	
Load Length	1.75 ft	2.75 ft	

Project: 22-0411 3-STORY
Location: UHDR 2
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2-Douglas-Fir-Larch - Dry Use
Section Adequate By: 118.8\%
Controlling Factor: Shear

DEFLECTIONS Center			
Live Load 0.01 IN L/4060			
Dead Load 0.01 in			
Total Load $0.02 \mathrm{IN} \mathrm{L/2419}$			
Live Load Deflection Criteria: L/240			Total Load Deflection Criteria: L/180
REACTIONS	A	B	
Live Load	954 lb	954 lb	
Dead Load	647 lb	647 lb	
Total Load	1601 lb	1601 lb	
Bearing Length	0.73 in	0.73 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length-	-Top	0 ft	
Unbraced Length-	h-Bottom	3.5 ft	
Live Load Duration	on Factor	1.15	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	Fb' $=1346$
$C d=1.15 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=207$
Cd=1.15	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

Controlling Moment:

$1400 \mathrm{ft}-\mathrm{lb}$
1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 $-1600 \mathrm{lb}$

4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 12.49 in3
11.6 in2
8.27 in4 $1400 \mathrm{ft}-\mathrm{lb} \quad 3438 \mathrm{ft}-\mathrm{lb}$ -1600 lb

Provided
30.66 in3
25.38 in 2
111.15 in4 3502 lb

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:03:06 PM

Project: 22-0411 3-STORY
Location: UHDR 3
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 2.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 206.3\%
Controlling Factor: Shear

DEFLECTIONS Center			
Live Load 0.00 IN L/MAX			
Dead Load 0.00 in			
Total Load 0.00 IN L/6639			
Live Load Deflection Criteria: L/240			Total Load Deflection Criteria: L/180
REACTIONS	A	B	
Live Load	681 lb	681 lb	
Dead Load	462 lb	462 lb	
Total Load	1143 lb	1143 lb	
Bearing Length	0.52 in	0.52 in	
BEAM DATA		Center	
Span Length		2.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	2.5 ft	
Live Load Duratio	on Factor	1.15	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1346$
$C d=1.15 \mathrm{CF}=1.30$	
$\mathrm{Fv}=1180 \mathrm{psi}$	$\mathrm{Fv}^{\prime}=207$
Cd=1.15	
E = 1600 ksi	$\mathrm{E}^{\prime}=1600$
$\mathrm{Fc}-\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

Controlling Moment:

$714 \mathrm{ft}-\mathrm{lb}$
1.25 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 1143 lb

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:
Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
6.37 in 3	30.66 in 3
8.28 in 2	25.38 in 2
3.01 in 4	111.15 in 4
$714 \mathrm{ft}-\mathrm{Ib}$	$3438 \mathrm{ft}-\mathrm{lb}$
1143 lb	3502 lb

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:03:21 PM

Shear Stress:	$\mathrm{Fv}=180 \mathrm{psi}$	$\mathrm{Fv}=$	207 psi
	$\mathrm{Cd}=1.15 \quad 1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=$	
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$		
Comp. $\perp^{\text {to Grain: }}$	$\mathrm{Fc}-\perp^{\prime}=625 \mathrm{psi}$	$\mathrm{Fc}-\perp^{\prime}=625 \mathrm{psi}$	

Project: 22-0411 3-STORY
Location: UHDR 4
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 46.8\%
Controlling Factor: Shear

DEFLECTIONS Center			
Live Load $0.02 \mathrm{lN} \mathrm{L/2715}$			
Dead Load 0.01 in			
Total Load $0.03 \mathrm{lN} \mathrm{L/1623}$			
Live Load Deflection Criteria: L/240			Total Load Deflection Criteria: L/180
REACTIONS	A	B	
Live Load	1426 lb	1426 lb	
Dead Load	960 lb	960 lb	
Total Load	2386 lb	2386 lb	
Bearing Length	1.09 in	1.09 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length-	-Top	0 ft	
Unbraced Length-	-Bottom	3.5 ft	
Live Load Duratio	on Factor	1.15	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1346 \mathrm{ps}$
$C d=1.15 \quad C F=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=207$
$C d=1.15$	
$=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
$\mathrm{c}-\perp=625 \mathrm{ps}$	Fc- ${ }^{\prime}=625$

LOADING DIAGRAM

Shear Stress:
Modulus of Elasticity:
Comp. $\perp^{\text {to Grain: }}$
Fc- $\perp=625 \mathrm{psi} \quad \mathrm{Fc}-\perp^{\prime}=625 \mathrm{psi}$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:03:45 PM

Controlling Moment:

$2088 \mathrm{ft}-\mathrm{lb}$
1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad 2386 \mathrm{lb}$

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 18.62 in3 17.29 in2 12.33 in4 $\quad 111.15$ in4 $2088 \mathrm{ft}-\mathrm{lb} \quad 3438 \mathrm{ft}-\mathrm{lb}$ $2386 \mathrm{lb} \quad 3502 \mathrm{lb}$

Project: 22-0411 3-STORY
Location: UHDR 5
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 71.2\%
Controlling Factor: Shear

DEFLECTIONS Center			Total Load Deflection Criteria: L/180
Live Load 0.0	0.01 IN	L/4311	
Dead Load	0.01 in		
Total Load	0.01 IN	L/2577	
Live Load Deflection Criteria: L/240			
REACTIONS	A	B	
Live Load	1223 lb	1223 lb	
Dead Load	823 lb	823 lb	
Total Load	2046 lb	2046 lb	
Bearing Length	0.93 in	0.93 in	
BEAM DATA		Center	
Span Length		3 ft	
Unbraced Length-	-Top	0 ft	
Unbraced Length-	-Bottom	3 ft	
Live Load Duration	Factor	1.15	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1346 \mathrm{ps}$
$C d=1.15 \quad C F=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=207$
$C d=1.15$	
$=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
$\mathrm{c}-\perp=625 \mathrm{ps}$	Fc- ${ }^{\prime}=625$

Shear Stress:
Modulus of Elasticity:
Comp. $\perp^{\text {to Grain: }}$
Fc- $\perp=625$ psi Fc- $\perp^{\prime}=625$ psi

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333

StruCalc Version 10.0.1.6
12/5/2022 3:03:56 PM

Controlling Moment:

$1534 \mathrm{ft}-\mathrm{lb}$
1.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 $-2045 \mathrm{lb}$

At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
13.68 in 3	30.66 in 3
14.82 in 2	25.38 in 2
7.76 in 4	111.15 if 4
$1534 \mathrm{ft}-\mathrm{lb}$	$3438 \mathrm{ft-lb}$
-2045 lb	3502 lb

LOADING DIAGRAM

UNIFORM LOADS							Center	
Uniform Live Load	815	plf						
Uniform Dead Load	543	plf						
Beam Self Weight	6	plf						
Total Uniform Load	1364	plf						

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:04:07 PM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 19.2\%

COLUMN PROPERTIES
 \#2-Douglas-Fir-Larch

Compressive Stress:	Base Values	Adjusted
	$\mathrm{Fc}=1350 \mathrm{psi}$	$\mathrm{Fc}^{\prime}=1279 \mathrm{psi}$
	$C d=1.15 \mathrm{Cf}=1.10 \mathrm{Cp}=0.75$	
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=900 \mathrm{psi} \\ & \mathrm{Cd}=1.15 \mathrm{CF}=1.30 \end{aligned}$	$\begin{aligned} & \text { Fbx' }=1346 \mathrm{psi} \\ & \mathrm{C}=1.00 \end{aligned}$
Bending Stress (Y-Y Axis):	$\begin{aligned} & \text { Fby }=900 \mathrm{psi} \\ & C d=1.15 \quad C F=1.30 \end{aligned}$	Fby' $=1346 \mathrm{psi}$
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600 \mathrm{ksi}$
Column Section (X-X Axis):		$\mathrm{dx}=\quad 5.5$
Column Section (Y-Y Axis):		$\mathrm{dy}=\quad 1.5$
Area:		$\mathrm{A}=\quad 8.25$
Section Modulus (X-X Axis):		Sx $=07.56$
Section Modulus ($\mathrm{Y}-\mathrm{Y}$ Axis):		Sy = $\quad 2.06$
Slenderness Ratio:		Lex/dx = 15.27
		Ley/dy = 0

Column Calculations (Controlling Case Only):

Actual Compressive Stress:	$\mathrm{Fc}=$	364	psi
Allowable Compressive Stress:	Fc' $=$	1279	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	124	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	124	ft -lb
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	ft -lb
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	1346	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$	0	psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	1346	
Combined Stress Factor:	CSF =	0.81	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:04:16 PM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 59.6\%

VERTICAL REACTIONS			
Live Load:	Vert-LL-Rxn $=$	954	lb
Dead Load:	Vert-DL-Rxn $=$	660	lb
Total Load:	Vert-TL-Rxn $=$	1614 lb	

COLUMN DATA		
Total Column Length:	7	ft
Unbraced Length (X-Axis) Lx:	7	ft
Unbraced Length (Y-Axis) Ly:	0	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.15	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Compressive Stress:	Base Values	Adjusted
	$\mathrm{Fc}=1350 \mathrm{psi}$	$\mathrm{Fc}^{\prime}=1279 \mathrm{psi}$
	$C d=1.15 \mathrm{Cf}=1.10 \mathrm{Cp}=0.75$	
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=900 \mathrm{psi} \\ & \mathrm{Cd}=1.15 \mathrm{CF}=1.30 \end{aligned}$	$\begin{aligned} & \text { Fbx' }=1346 \mathrm{psi} \\ & \mathrm{C}=1.00 \end{aligned}$
Bending Stress (Y-Y Axis):	$\begin{aligned} & \text { Fby }=900 \mathrm{psi} \\ & C d=1.15 \quad C F=1.30 \end{aligned}$	Fby' $=1346 \mathrm{psi}$
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600 \mathrm{ksi}$
Column Section (X-X Axis):		$\mathrm{dx}=\quad 5.5$
Column Section (Y-Y Axis):		$\mathrm{dy}=\quad 1.5$
Area:		$\mathrm{A}=\quad 8.25$
Section Modulus (X-X Axis):		Sx $=07.56$
Section Modulus ($\mathrm{Y}-\mathrm{Y}$ Axis):		Sy = $\quad 2.06$
Slenderness Ratio:		Lex/dx = 15.27
		Ley/dy = 0

Column Calculations (Controlling Case Only):

Actual Compressive Stress:	$\mathrm{Fc}=$	196	psi
Allowable Compressive Stress:	Fc' $=$	1279	ps
Eccentricity Moment (X-X Axis):	Mx-ex =	67	ft -I
Eccentricity Moment (Y-Y Axis):	My-ey =	67	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	ft -lb
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	My =	0	ft
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1346	ps
Bending Stress Lateral Loads Only ($\mathrm{Y}-\mathrm{Y}$ Axis)	Fby $=$	0	
Allowable Bending Stress (Y-Y Axis):	Fby' =	1346	psi
Combined Stress Factor:	CSF =	0.4	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:04:25 PM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 71.8\%

VERTICAL REACTIONS			
Live Load:	Vert-LL-Rxn $=$	681	lb
Dead Load:	Vert-DL-Rxn $=$	475	lb
Total Load:	Vert-TL-Rxn $=1156 \mathrm{lb}$		

COLUMN DATA		
Total Column Length:	7 ft	
Unbraced Length (X-Axis) Lx:	7 ft	
Unbraced Length (Y-Axis) Ly:	0	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.15	

COLUMN PROPERTIES

\#2-Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L+D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	140	psi
Allowable Compressive Stress:	$\mathrm{Fc}=$	1279	psi
Eccentricity Moment (X-X Axis):	$\mathrm{Mx}-\mathrm{ex}=$	48	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My -ey $=$	48	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	$\mathrm{Fbx'}$	1346	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$	0	psi
Allowable Bending Stress (Y-Y Axis):	$\mathrm{Fby}=$	1346	psi
Combined Stress Factor:	CSF =	$\mathbf{0 . 2 8}$	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:04:36 PM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 37.4\%

| VERTICAL REACTIONS | | |
| :--- | :--- | :--- | :--- |
| Live Load: | Vert-LL-Rxn $=1426$ | lb |
| Dead Load: | Vert-DL-Rxn $=$ 973
 lb
 Total Load: Vert-TL-Rxn $=2399$
 lb | |

COLUMN DATA		
Total Column Length:	7	ft
Unbraced Length (X-Axis) Lx:	7	ft
Unbraced Length (Y-Axis) Ly:	0	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.15	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Compressive Stress:	Base Values	Adjusted
	$\mathrm{Fc}=1350 \mathrm{psi}$	$\mathrm{Fc}^{\prime}=1279 \mathrm{psi}$
	$C d=1.15 \mathrm{Cf}=1.10 \mathrm{Cp}=0.75$	
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=900 \mathrm{psi} \\ & \mathrm{Cd}=1.15 \mathrm{CF}=1.30 \end{aligned}$	$\begin{aligned} & \text { Fbx' }=1346 \mathrm{psi} \\ & \mathrm{C}=1.00 \end{aligned}$
Bending Stress (Y-Y Axis):	$\begin{aligned} & \text { Fby }=900 \mathrm{psi} \\ & C d=1.15 \quad C F=1.30 \end{aligned}$	Fby' $=1346 \mathrm{psi}$
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600 \mathrm{ksi}$
Column Section (X-X Axis):		$\mathrm{dx}=\quad 5.5$
Column Section (Y-Y Axis):		$\mathrm{dy}=\quad 1.5$
Area:		$\mathrm{A}=\quad 8.25$
Section Modulus (X-X Axis):		Sx $=07.56$
Section Modulus ($\mathrm{Y}-\mathrm{Y}$ Axis):		Sy = $\quad 2.06$
Slenderness Ratio:		Lex/dx = 15.27
		Ley/dy = 0

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	291	ps
Allowable Compressive Stress:	Fc' $=$	1279	ps
Eccentricity Moment (X-X Axis):	Mx-ex $=$	99	ft-l
Eccentricity Moment (Y-Y Axis):	My-ey =	99	ft-I
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft-lb}$
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\mathrm{My}=$	0	ft-l
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1346	ps
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =	0	
Allowable Bending Stress (Y-Y Axis):	Fby' =	1346	
Combined Stress Factor:	CSF =	0.63	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:04:48 PM
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 47.3\%

| VERTICAL REACTIONS | | |
| :--- | :--- | :--- | :--- |
| Live Load: | Vert-LL-Rxn $=1223 \mathrm{lb}$ | |
| Dead Load: | Vert-DL-Rxn $=836 \mathrm{lb}$ | |
| Total Load: | Vert-TL-Rxn $=2059 \mathrm{lb}$ | |

COLUMN DATA		
Total Column Length:	7 ft	
Unbraced Length (X-Axis) Lx:	7 ft	
Unbraced Length (Y-Axis) Ly:	0	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.15	

COLUMN PROPERTIES
 \#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L+D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	250	psi
Allowable Compressive Stress:	$\mathrm{Fc}=$	1279	psi
Eccentricity Moment (X-X Axis):	$\mathrm{Mx}-\mathrm{ex}=$	85	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My -ey $=$	85	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	$\mathrm{Fbx'}$	1346	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$	0	psi
Allowable Bending Stress (Y-Y Axis):	$\mathrm{Fby}=$	1346	psi
Combined Stress Factor:	CSF =	$\mathbf{0 . 5 3}$	

UPPER FLOOR FRAMING GUIDE

Project: 22-0411 3-STORY
Location: TYP JOISTS
Floor Joist
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 15.0 \mathrm{FT}$ @ 16 O.C.
\#2 - Douglas-Fir-Larch - Dry Use

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:05:18 PM
Section Adequate By: 12.0\%
Controlling Factor: Moment

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted	
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=$	1035
$C d=1.00 \quad C F=1.00 \quad \mathrm{Cr}=1.15$		
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=$	180
$C d=1.00$		
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=$	1600
$\mathrm{Fc}-\perp=625 \mathrm{psi}$		

$2437 \mathrm{ft}-\mathrm{lb}$
7.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:

650 lb

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	28.26 in 3	31.64 in 3
Area (Shear):	$5.42 \mathrm{in2}$	$16.88 \mathrm{in2}$
Moment of Inertia (deflection):	$123.38 \mathrm{in4}$	$177.98 \mathrm{in4}$
Moment:	$2437 \mathrm{ft}-\mathrm{lb}$	$2729 \mathrm{ft}-\mathrm{lb}$
Shear:	650 lb	2025 lb

LOADING DIAGRAM

JOIST DATA	$\frac{\text { Center }}{}$
Span Length	15 ft
Unbraced Length-Top	0 ft
Unbraced Length-Bottom	0 ft
Floor sheathing applied to top of joists-top of joists fully braced.	
Floor Duration Factor	1.00

JOIST LOADING		
Uniform Floor Loading		Center
Live Load	LL =	40 psf
Dead Load	DL =	25 psf
Total Load	TL =	65 psf
TL Adj. For Joist Spacing		86.7 plf

Project: 22-0411 3-STORY
Location: DECK JOISTS
Floor Joist
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 5.0 \mathrm{FT}$ Pressure Treated @ 16 O.C.
\#2 - Hem-Fir - Dry Use
Section Adequate By: 374.3\%
Controlling Factor: Moment

DEFLECTIONS Center			
$\begin{array}{llll}\text { Live Load } & 0.01 & \mathrm{IN} \mathrm{L/4707}\end{array}$			
Dead Load 0.00 in			
$\begin{array}{lll}\text { Total Load } & 0.02 \mathrm{IN} \mathrm{L/3621}\end{array}$			
Live Load Deflection Criteria: L/360 Total Load Deflection Criteria: L/240			
REACTIONS	A	A B	
Live Load	133	lb 133 lb	
Dead Load		lb 40 lb	
Total Load	173	lb 173 lb	
Bearing Length	0.29 i	in 0.29 in	
SUPPORT LOAD		A ${ }^{\text {B }}$	
Live Load		100 plf 100	plf
Dead Load		30 plf 30	plf
Total Load		130 plf 130	

MATERIAL PROPERTIES

\#2-Hem-Fir
Bending Stress:

Base Values		Adjusted	
$\mathrm{Fb}=$	850 psi	Fb'	938
$C d=1.00 \quad C F=1.20 \quad \mathrm{Cr}=1.15 \mathrm{Ci}=0.80$			
=	150 psi	$\mathrm{Fv}^{\prime}=$	120
$C d=1.00 \mathrm{Ci}=0.80$			
$\begin{aligned} & E= \\ & C i=0.95 \end{aligned}$	1300 ksi	E' =	1235
Fc- - =	405 psi	Fc- ${ }^{\text {- }}$	405

Controlling Moment:

$217 \mathrm{ft}-\mathrm{lb}$

2.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2
LOADING DIAGRAM

Controlling Shear: 173 lb

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	$\frac{\text { Provided }}{}$
Section Modulus:	2.77 in 3	13.14 in 3
Area (Shear):	2.17 in 2	10.88 in 2
Moment of Inertia (deflection):	3.64 in 4	47.63 in 4
Moment:	$217 \mathrm{ft-lb}$	1028 ft lb
Shear:	173 lb	870 lb

Project: 22-0411 3-STORY
Location: STAIR JOISTS
Floor Joist
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 9.25 \mathrm{IN} \times 8.0$ FT Pressure Treated @ 16 O.C.
\#2 - Hem-Fir - Dry Use
Section Adequate By: 15.0\%
Controlling Factor: Moment

MATERIAL PROPERTIES

\#2 - Hem-Fir

Bending Stress:

Base Values		Adjusted	
$\mathrm{Fb}=$	850 psi	$\mathrm{Fb}^{\prime}=$	860
$C d=1.00 \quad C F=1.10 \quad \mathrm{Cr}=1.15 \mathrm{Ci}=0.80$			
$\mathrm{Fv}=$	150 psi	$\mathrm{Fv}^{\prime}=$	120
$C d=1.00 \mathrm{Ci}=0.80$			
$\begin{aligned} & E= \\ & C i=0.95 \end{aligned}$	1300 ksi	E' =	1235
Fc- -	405 psi	Fc- ${ }^{\text {- }}$	405

Controlling Moment:
$1333 \mathrm{ft}-\mathrm{lb}$
4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: 667 lb

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	$\frac{R e q ' d}{}$	Provided
Section Modulus:	18.6 in 3	21.39 in 3
Area (Shear):	8.33 in 2	$13.88 \mathrm{in2}$
Moment of Inertia (deflection):	37.31 in 4	$98.93 \mathrm{in4}$
Moment:	$1333 \mathrm{ft}-\mathrm{lb}$	$1533 \mathrm{ft}-\mathrm{lb}$
Shear:	667 lb	1110 lb

Project: 22-0411 3-STORY
Location: HDR 1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 4.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 1111.3\%
Controlling Factor: Moment

DEFLECTIONS Center			
Live Load 0.00 IN L/MAX			
Dead Load 0.00 in			
Total Load 0.01 IN L/MAX			
Live Load Deflection Criteria: L/360			Total Load Deflection Criteria: L/240
REACTIONS	A	B	
Live Load	61 lb	61 lb	
Dead Load	159 lb	159 lb	
Total Load	220 lb	220 lb	
Bearing Length	0.10 in	0.10 in	
BEAM DATA		Center	
Span Length		4.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	4.5 ft	
Live Load Duratio	on Factor	1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	Fb' $=1170$ ps
$C d=1.00 \quad C F=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=180$
$C d=1.00$	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
$\mathrm{Fc}-\perp=625 \mathrm{ps}$	625

$\begin{array}{lll}\text { Modulus of Elasticity: } & \mathrm{E}=\quad 1600 \mathrm{ksi} & \mathrm{E}^{\prime}= \\ \text { Comp. } \perp_{\text {to Grain: }} & \mathrm{Fc}-\perp_{=}=\begin{array}{rl}1600 \mathrm{ksi} \\ 625 \mathrm{psi} & \mathrm{Fc}-\perp^{\prime}= \\ 625 \mathrm{psi}\end{array}\end{array}$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:06:11 PM

Controlling Moment:

$247 \mathrm{ft}-\mathrm{lb}$
2.25 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad-219 \mathrm{lb}$

5.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 2.53 in3 1.83 in2 2.5 in4 $247 \mathrm{ft}-\mathrm{lb}$ -219 lb

Provided 30.66 in3 25.38 in2 111.15 in 4 $2989 \mathrm{ft}-\mathrm{lb}$ 3045 lb

Project: 22-0411 3-STORY
Location: HDR 2
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 664.8\%
Controlling Factor: Shear

DEFLECTIONS Center			Total Load Deflection Criteria: L/240
Live Load 0.00 IN L/MAX			
Dead Load 0.00 in			
Total Load 0.00 IN L/9725			
Live Load Deflection Criteria: L/360			
REACTIONS	A	B	
Live Load	222 lb	222 lb	
Dead Load	176 lb	176 lb	
Total Load	398 lb	398 lb	
Bearing Length	0.18 in	0.18 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	3.5 ft	
Live Load Duratio	on Factor	1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{p}$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' = 180
Cd=1.00	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

$\begin{array}{lll}\text { Modulus of Elasticity: } & \mathrm{E}=\quad 1600 \mathrm{ksi} & \mathrm{E}^{\prime}= \\ \text { Comp. } \perp_{\text {to Grain: }} & \mathrm{Fc}-\perp_{=}=\begin{array}{rl}1600 \mathrm{ksi} \\ 625 \mathrm{psi} & \mathrm{Fc}-\perp^{\prime}= \\ 625 \mathrm{psi}\end{array}\end{array}$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:06:21 PM

Controlling Moment:

$348 \mathrm{ft}-\mathrm{lb}$
1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad-398 \mathrm{lb}$

4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:
Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 3.32 in2 $\quad 30.66$ in3
2.74 in4-111.15 in4 $348 \mathrm{ft}-\mathrm{lb} \quad 2989 \mathrm{ft}-\mathrm{lb}$
$-398 \mathrm{lb} \quad 3045 \mathrm{lb}$

Project: 22-0411 3-STORY
Location: HDR 3
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 2.5 \mathrm{FT}$
\#2-Douglas-Fir-Larch - Dry Use
Section Adequate By: 970.8\%
Controlling Factor: Shear

DEFLECTIONS Center			
Live Load 0.00 IN L/MAX			
Dead Load 0.00 in			
Total Load 0.00 IN L/MAX			
Live Load Deflection Criteria: L/360			Total Load Deflection Criteria: L/240
REACTIONS	A	B	
Live Load	159 lb	159 lb	
Dead Load	126 lb	126 lb	
Total Load	285 lb	285 lb	
Bearing Length	0.13 in	0.13 in	
BEAM DATA		Center	
Span Length		2.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	2.5 ft	
Live Load Duratio	on Factor	1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{p}$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' = 180
Cd=1.00	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

$\begin{array}{lll}\text { Modulus of Elasticity: } & \mathrm{E}=\quad 1600 \mathrm{ksi} & \mathrm{E}^{\prime}= \\ \text { Comp. } \perp_{\text {to Grain: }} & \mathrm{Fc}-\perp_{=}=\begin{array}{rl}1600 \mathrm{ksi} \\ 625 \mathrm{psi} & \mathrm{Fc}-\perp^{\prime}= \\ 625 \mathrm{psi}\end{array}\end{array}$
$178 \mathrm{ft}-\mathrm{lb}$

Controlling Moment:

1.25 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad-284 \mathrm{lb}$

3.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:
Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 1.82 in3 $\quad 30.66$ in3
2.37 in2 25.38 in2 1 in4 $\quad 111.15$ in4 $178 \mathrm{ft}-\mathrm{lb} \quad 2989 \mathrm{ft}-\mathrm{lb}$ $-284 \mathrm{lb} \quad 3045 \mathrm{lb}$

Project: 22-0411 3-STORY
Location: HDR 4
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 191.2\%
Controlling Factor: Shear

DEFLECTIONS Center			
Live Load 0.01 IN L/5182			
Dead Load 0.00 in			
Total Load $0.01 \mathrm{IN} \mathrm{L/3703}$			
Live Load Deflection Criteria: L/360			Total Load Deflection Criteria: L/240
REACTIONS	A	B	
Live Load	747 lb	747 lb	
Dead Load	298 lb	298 lb	
Total Load	1045 lb	1045 lb	
Bearing Length	0.48 in	0.48 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	3.5 ft	
Live Load Duratio	on Factor	1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch
Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	Fb' $=1170$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	$\mathrm{Fv}^{\prime}=180$
Cd=1.00	
E = 1600 ksi	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	25

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6 12/6/2022 12:28:28 PM

Shear Stress:
Modulus of Elasticity:
Comp. $\perp^{\text {to Grain: }}$

Controlling Moment:

$915 \mathrm{ft}-\mathrm{lb}$
1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad-1046 \mathrm{lb}$

4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
9.38 in 3	30.66 in 3
8.71 in 2	25.38 in 2
7.72 in 4	111.15 in 4
$915 \mathrm{ft-lb}$	$2989 \mathrm{ft}-\mathrm{lb}$
-1046 lb	3045 lb

Project: 22-0411 3-STORY
Location: HDR 5
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.0 \mathrm{FT}$
\#2-Douglas-Fir-Larch - Dry Use
Section Adequate By: 460.0\%
Controlling Factor: Shear

DEFLECTIONS Center			Total Load Deflection Criteria: L/240
Live Load	0.00 IN	L/MAX	
Dead Load	0.00 in		
Total Load	0.00 IN	L/9692	
Live Load Deflection Criteria: L/360			
REACTIONS	A	B	
Live Load	363 lb	363 lb	
Dead Load	181 lb	181 lb	
Total Load	544 lb	544 lb	
Bearing Length	0.25 in	0.25 in	
BEAM DATA Center			
Span Length		3 ft	
Unbraced Length-Top		0 ft	
Unbraced Length-Bottom		3 ft	
Live Load Duration Factor		1.00	
Notch Depth		0.00	

LOADING DIAGRAM		

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{ps}$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=180$
$C d=1.00$	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6 12/6/2022 12:28:55 PM

Controlling Moment:

$408 \mathrm{ft}-\mathrm{lb}$
1.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 $$
-544 \mathrm{lb}
$$

At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd
4.18 in3
4.53 in2
25.38 in 2
2.76 in4 $\quad 111.15$ in4 $408 \mathrm{ft}-\mathrm{lb} \quad 2989 \mathrm{ft}-\mathrm{lb}$
$-544 \mathrm{lb} \quad 3045 \mathrm{lb}$

Project: 22-0411 3-STORY
Location: HDR 6
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2-Douglas-Fir-Larch - Dry Use
Section Adequate By: 110.8\%
Controlling Factor: Shear

DEFLECTIONS Center			Total Load Deflection Criteria: L/240
Live Load	0.01 IN	/4609	
Dead Load	0.01 in		
Total Load	0.02 IN	/2680	
Live Load Deflection Criteria: L/360			
REACTIONS	A	B	
Live Load	840 lb	840 lb	
Dead Load	605 lb	605 lb	
Total Load	1445 lb	1445 lb	
Bearing Length	0.66 in	0.66 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	3.5 ft	
Live Load Duratio	on Factor	1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch

StruCalc Version 10.0.1.6
12/5/2022 3:09:50 PM

LOADING DIAGRAM

UNIFORM LOADS	Center	
Uniform Live Load	480	plf
Uniform Dead Load	340	plf
Beam Self Weight	6	plf
Total Uniform Load	826	plf

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1170 \mathrm{ps}$
$C d=1.00 \mathrm{CF}=1.30$	
$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=180$
$C d=1.00$	
$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600$
Fc- $\perp=625 \mathrm{psi}$	Fc- ${ }^{\prime}=625$

$\begin{array}{lll}\text { Modulus of Elasticity: } & \mathrm{E}=\quad 1600 \mathrm{ksi} & \mathrm{E}^{\prime}= \\ \text { Comp. } \perp_{\text {to Grain: }} & \mathrm{Fc}-\perp_{=}=\begin{array}{rl}1600 \mathrm{ksi} \\ 625 \mathrm{psi} & \mathrm{Fc}-\perp^{\prime}= \\ 625 \mathrm{psi}\end{array}\end{array}$

Controlling Moment:
$1264 \mathrm{ft}-\mathrm{lb}$
1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: $\quad-1445 \mathrm{lb}$

4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd 12.96 in3
12.04 in2 9.95 in4 $\quad 111.15$ in4 $1264 \mathrm{ft}-\mathrm{lb} \quad 2989 \mathrm{ft}-\mathrm{lb}$

Provided 30.66 in3 25.38 in 2 3045 lb

Project: 22-0411 3-STORY
Location: FB1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 4.0$ FT Pressure Treated
\#2 - Hem-Fir - Dry Use

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 11:31:09 AM
Section Adequate By: 34.2\%
Controlling Factor: Shear

DEFLECTIONS Center		
Live Load	$0.01 \mathrm{IN} \mathrm{L/4580}$	
Dead Load	0.00 in	
Total Load	0.01 IN L/3641	
Live Load Deflection Criteria: L/360		Total Load Deflection Criteria: L/240
REACTIONS	A $\quad \underline{B}$	
Live Load	800 lb 800 lb	
Dead Load	206 lb 206 lb	
Total Load	1006 lb 1006 lb	
Bearing Length	1.66 in 1.66 in	
BEAM DATA Center		
Span Length 4 ft		
Unbraced Length-Top 0 ft		
Unbraced Length-Bottom 4 ft		
Live Load Duration Factor 1.00		
Notch Depth 0.00		

MATERIAL PROPERTIES

\#2-Hem-Fir

Bending Stress:

Base Values		Adjusted	
$\mathrm{Fb}=$	850 psi	Fb'	680 p
$C d=1.00 \quad C F=1.00 \quad \mathrm{Ci}=0.80$			
$\mathrm{Fv}=$	150 psi	$\mathrm{Fv}^{\prime}=$	120
$\mathrm{Cd}=1.00 \mathrm{Cl}=0.80$			
$\mathrm{E}=$	1300 ksi	$\mathrm{E}^{\prime}=$	1235
$\mathrm{Ci}=0.95$			
Fc- ${ }^{\text {- }}=$	405 psi	Fc-	405

Comp. $\perp^{\text {to Grain: }}$

Controlling Moment:

$1006 \mathrm{ft}-\mathrm{lb}$
2.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2
Controlling Shear: $\quad-1006 \mathrm{lb}$
At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	17.76 in 3	31.64 in 3
Area (Shear):	$12.58 \mathrm{in2}$	$16.88 \mathrm{in2}$
Moment of Inertia (deflection):	13.99 in 4	177.98 in 4
Moment:	$1006 \mathrm{ft}-\mathrm{lb}$	$1793 \mathrm{ft}-\mathrm{lb}$
Shear:	-1006 lb	1350 lb

Shear Stress:
Modulus of Elasticity: -1006 lb 1350 lb

Controlling Moment: $\quad-1611 \mathrm{ft}-\mathrm{lb}$

Over right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2, 3

Controlling Shear: $\quad 1141 \mathrm{lb}$

At left support of span 3 (Right Span)
Created by combining all dead loads and live loads on span(s) 2, 3

Comparisons with required sections:

Section Modulus:

Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
28.9 in 3	63.28 in 3
$14.27 \mathrm{in2}$	33.75 in 2
71.18 in 4	355.96 in 4
-1611 ft lb	$3527 \mathrm{ft-lb}$
1141 lb	2700 lb

Project: 22-0411 3-STORY
Location: FB2
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 8.0$ FT Pressure Treated $(6.5+1.5)$
\#2 - Hem-Fir - Dry Use
Section Adequate By: 119.0\%
Controlling Factor: Moment

CAUTIONS

* Laminations are to be fully connected to provide uniform transfer of loads to all members

StruCalc Version 10.0.1.6
12/6/2022 11:32:32 AM
Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333

Project: 22-0411 3-STORY
Location: DB1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$5.5 \mathrm{IN} \times 9.5 \mathrm{IN} \times 12.0 \mathrm{FT}$
\#2 - Hem-Fir - Dry Use
Section Adequate By: 85.0\%
Controlling Factor: Moment

DEFLECTIONS Center			Total Load Deflection Criteria: L/240
Live Load 0.11 IN L/1334			
Dead Load 0.04 in			
Total Load 0.15 IN L/955			
Live Load Deflection Criteria: L/360			
REACTIONS	A	B	
Live Load	600 lb	600 lb	
Dead Load	238 lb	238 lb	
Total Load	838 lb	838 lb	
Bearing Length	0.38 in	0.38 in	
BEAM DATA		Center	
Span Length		12 ft	
Unbraced Length	-Top	0 ft	
Unbraced Length	-Bottom	12 ft	
Live Load Duratio	Factor	1.00	
Notch Depth		0.00	

MATERIAL PROPERTIES

\#2-Hem-Fir

Bending Stress:

Base Values	Adjusted
$\mathrm{Fb}=675 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=675$
$C d=1.00 \quad C F=1.00$	
$\mathrm{Fv}=140 \mathrm{psi}$	$\mathrm{Fv}^{\prime}=140$
Cd=1.00	
$\mathrm{E}=1100 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1100$
$\mathrm{c}-\perp=405 \mathrm{ps}$	Fc- ${ }^{\prime}=405$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333

StruCalc Version 10.0.1.6
12/5/2022 3:10:24 PM

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 11:31:28 AM
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 3.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 82.2\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	800 lb
Dead Load: Ve	Vert-DL-Rxn =	224 lb
Total Load: \quad V	Vert-TL-Rxn $=$	1024 lb
COLUMN DATA		
Total Column Length:	8 ft	
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 8 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:	$y: \quad 0 \mathrm{ft}$	
Column End Condition-K (e):): 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	98	psi
Allowable Compressive Stress:	$\mathrm{Fc}^{\prime}=$	568	psi
Eccentricity Moment (X-X Axis):	Mx -ex $=$	42	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	42	ft -lb
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1350	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =		psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	1350	psi
Combined Stress Factor:	CSF =	0.18	

AXIAL LOADING

| Live Load: | $\mathrm{PL}=800 \mathrm{lb}$ * |
| :--- | :--- | :--- |
| Dead Load: | $\mathrm{PD}=206 \mathrm{lb}{ }^{*}$ |
| Column Self Weight: | $\mathrm{CSW}=18 \mathrm{lb}$ |
| Total Axial Load: | $\mathrm{PT}=1024 \mathrm{lb}$ |
| *Load obtained from Load Tracker. See Summary Report for details. | |

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 11:33:06 AM
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 87.5\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	1097 lb
Dead Load: Ve	Vert-DL-Rxn =	342 lb
Total Load: V	Vert-TL-Rxn =	1439 lb
COLUMN DATA		
Total Column Length:	8 ft	
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 8 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:	$y: \quad 0 \mathrm{ft}$	
Column End Condition-K (e):): 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

ual Compressive Stress:	Fc =	87	psi
Allowable Compressive Stress:	Fc' $=$	1053	si
Eccentricity Moment (X-X Axis):	Mx-ex =	59	$\mathrm{ft-lb}$
Eccentricity Moment ($\mathrm{Y}-\mathrm{Y}$ Axis):	My-ey =	59	ft -lb
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	My =	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	1170	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =		
Allowable Bending Stress (Y-Y Axis):	Fby' =	1170	psi
Combined Stress Factor:	CSF =	0.12	

AXIAL LOADING

Live Load:
Dead Load:
Colum PD $=313 \mathrm{lb}$
Total Axial Load: $\quad \mathrm{PT}=1439 \mathrm{lb}$

* Load obtained from Load Tracker. See Summary Report for details.

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:11:02 PM
$5.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Hem-Fir - Dry Use
Section Adequate By: 93.9\%

VERTICAL REACTIONS		
Live Load:	Vert-LL-Rxn $=600$	lb
Dead Load:	Vert-DL-Rxn $=283 \mathrm{lb}$	
Total Load:	Vert-TL-Rxn $=883 \mathrm{lb}$	

COLUMN DATA		
Total Column Length:	8	ft
Unbraced Length (X-Axis) Lx:	8	ft
Unbraced Length (Y-Axis) Ly:	8	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Hem-Fir

	Base Values	Adjusted	
Compressive Stress:	$\begin{aligned} & \mathrm{FC}=\quad 575 \mathrm{psi} \\ & \mathrm{Cd}=1.00 \quad \mathrm{Cp}=0.86 \end{aligned}$	$\mathrm{Fc}^{\prime}=$	492 psi
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=575 \mathrm{psi} \\ & \mathrm{Cd}=1.00 \mathrm{CF}=1.00 \end{aligned}$	$F b x^{\prime}=$	575 psi
Bending Stress (Y-Y Axis):	$\begin{aligned} & \text { Fby }=575 \mathrm{psi} \\ & \mathrm{Cd}=1.00 \mathrm{CF}=1.00 \end{aligned}$	Fby' =	575 psi
Modulus of Elasticity:	$\mathrm{E}=1100 \mathrm{ksi}$	$\mathrm{E}^{\prime}=$	1100 ksi
Column Section (X-X Axis):		$\mathrm{dx}=$	5.5
Column Section (Y-Y Axis):		dy $=$	5.5
Area:		A =	30.25
Section Modulus (X-X Axis):		Sx =	27.73
Section Modulus (Y-Y Axis):		Sy =	27.73
Slenderness Ratio:		Lex/dx $=$	= 17.45
		Ley/dy	$=17.45$

Column Calculations (Controlling Case Only):

Actual Compressive Stress:	$\mathrm{Fc}=$	29	psi
Allowable Compressive Stress:	Fc' $=$	492	psi
Eccentricity Moment (X-X Axis):	Mx -ex $=$	35	ft -lb
Eccentricity Moment (Y-Y Axis):	My-ey =	35	$\mathrm{ft-lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	ft-lb
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	My =	0	ft -l
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	575	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$		
Allowable Bending Stress (Y-Y Axis):	Fby' =	575	psi
Combined Stress Factor:	CSF =	0.06	

AXIAL LOADING

Live Load: $\quad \mathrm{PL}=600 \mathrm{lb}$ *
Dead Load: $\quad \mathrm{PD}=238 \mathrm{lb}$ *
Column Self Weight: CSW = 45 lb
Total Axial Load: \quad PT $=883 \mathrm{lb}$

* Load obtained from Load Tracker. See Summary Report for details.

DESCRIPTION: HDR 1 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021

General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 1 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=1.219, \mathrm{~S}=1.781 \mathrm{k}$
HDR 1: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.1590, \mathrm{~L}=0.0610 \mathrm{k}$

DESIGN SUMMARY

Maximum Reactions							Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top		k	Y-Y Axis Reaction @ Base @ Top		Axial Reaction @ Base	$\begin{gathered} \text { My - Eno } \\ \text { @ Bas } \end{gathered}$	ments k-ft @ Top	Mx - End @ Base	Moments @ Top
D Only	-0.008	0.008		-0.008	0.008	1.391				
+D+L	-0.009	0.009		-0.009	0.009	1.452				
+D+S	-0.019	0.019		-0.019	0.019	3.172				
+D+0.750L	-0.008	0.008		-0.008	0.008	1.436				
+D+0.750L+0.750S	-0.016	0.016		-0.016	0.016	2.772				
+0.60D	-0.005	0.005		-0.005	0.005	0.834				
L Only	-0.000	0.000		-0.000	0.000	0.061				
S Only	-0.011	0.011		-0.011	0.011	1.781				

DESCRIPTION: HDR 2 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021
General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 2 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.660, \mathrm{~S}=0.9540 \mathrm{k}$
HDR 2: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.1760, \mathrm{~L}=0.2220 \mathrm{k}$

DESIGN SUMMARY

DESCRIPTION: HDR 3 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021
General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 3 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.4750, \mathrm{~S}=0.6810 \mathrm{k}$
HDR 3: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.1260, \mathrm{~L}=0.1590 \mathrm{k}$

DESIGN SUMMARY

Maximum Reactions							Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction		k	Y-Y Axis Reaction		Axial Reaction @ Base	My - End M @ Base	ments \mathbf{k}-ft @ Top	Mx - End @ Base	Moments @ Top
D Only	-0.004	0.004		-0.004	0.004	0.614				
+D+L	-0.005	0.005		-0.005	0.005	0.773				
+D+S	-0.008	0.008		-0.008	0.008	1.295				
+D+0.750L	-0.004	0.004		-0.004	0.004	0.733				
+D+0.750L+0.750S	-0.007	0.007		-0.007	0.007	1.244				
+0.60D	-0.002	0.002		-0.002	0.002	0.368				
L Only	-0.001	0.001		-0.001	0.001	0.159				
S Only	-0.004	0.004		-0.004	0.004	0.681				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column

Project File: 22-0411 3-STORY.ec6

LIC\# : KW-06014874, Build:20.22.10.25
Stability Engineering Inc.
(c) ENERCALC INC 1983-2022

DESCRIPTION: HDR 4 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021
General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 4 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.9730, \mathrm{~S}=1.426 \mathrm{k}$
HDR 4: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.2980, \mathrm{~L}=0.7470 \mathrm{k}$

DESIGN SUMMARY

Bending \& Shear Check Results		
PASS	Max. Axial+Bending Stress Ratio	$0=0.7665: 1$
	Load Combination	+D+0.750L+0.750S
	Governing NDS Forlorap + Mxx +	+ Myy, NDS Eq. 3.9-
	Location of max.above base	6.953 ft
	At maximum location values are .	
	Applied Axial	2.913 k
	Applied Mx	-0.1201 k-ft
	Applied My	-0.1201 k-ft
	Fc : Allowable	1,279.47 psi
PASS	Maximum Shear Stress Ratio = Load Combination	$\begin{array}{r} \mathbf{0 . 0 1 5 1 7 : 1} \\ +D+0.750 L+0.750 S \end{array}$
	Location of max.above base	7.0 ft
	Applied Design Shear	3.139 psi
	Allowable Shear	207.0 psi

Maximum SERVICE Lateral Load Reactions ..

Top along Y-Y	0.01727 k	Bottom along Y-Y	0.01727 k
Top along X-X	0.01727 k	Bottom along X-X	0.01727 k

Maximum SERVICE Load Lateral Deflections . . .

Along Y-Y $\quad-0.01990$ in at 4.087 ft above base for load combination: $+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}$
Along X-X $\quad-0.2675$ in at 4.087 ft above base for load combination : +D+0.750L+0.750S
Other Factors used to calculate allowable stresses ...
Bending Compression Tension

Maximum Reactions							Note: Only non-zero reactions are listed.	
Load Combination	X-X Axis @ Base	eaction @ Top	k	Y-Y Axis @ Base	Reaction @ Top	Axial Reaction @ Base	My - End Moments k-ft @ Base @ Top	Mx - End Moments @ Base @ Top
D Only	-0.008	0.008		-0.008	0.008	1.284		
+D+L	-0.012	0.012		-0.012	0.012	2.031		
+D+S	-0.016	0.016		-0.016	0.016	2.710		
+D+0.750L	-0.011	0.011		-0.011	0.011	1.844		
+D+0.750L+0.750S	-0.017	0.017		-0.017	0.017	2.913		
+0.60D	-0.005	0.005		-0.005	0.005	0.770		
L Only	-0.004	0.004		-0.004	0.004	0.747		
S Only	-0.008	0.008		-0.008	0.008	1.426		

DESCRIPTION: HDR 5 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021

General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
UHDR 5 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.8360, \mathrm{~S}=1.223 \mathrm{k}$
HDR 5: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=0.1810, \mathrm{~L}=0.3630 \mathrm{k}$

DESIGN SUMMARY

Maximum Reactions							Note: Only non-zero reactions are listed.		
Load Combination	X-X Axis Reaction		k	Y-Y Axis Reaction		Axial Reaction @ Base	My - End Moments k-ft @ Base @ Top	Mx - End M @ Base	Moments @ Top
D Only	-0.006	0.006		-0.006	0.006	1.030			
+D+L	-0.008	0.008		-0.008	0.008	1.393			
+D+S	-0.013	0.013		-0.013	0.013	2.253			
+D+0.750L	-0.008	0.008		-0.008	0.008	1.302			
+D+0.750L+0.750S	-0.013	0.013		-0.013	0.013	2.219			
+0.60D	-0.004	0.004		-0.004	0.004	0.618			
L Only	-0.002	0.002		-0.002	0.002	0.363			
S Only	-0.007	0.007		-0.007	0.007	1.223			

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333

StruCalc Version 10.0.1.6
12/5/2022 3:15:02 PM
Section Adequate By: 74.8\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS			
Live Load:		Vert-LL-Rxn $=$	840
Dead Load:	Vert-DL-Rxn $=$	621	lb
Total Load:	Vert-TL-Rxn $=$	1461 lb	
COLUMN DATA Total Column Length: Unbraced Length (X-Axis) Lx: 7 ft Unbraced Length (Y-Axis) Ly: 0 ft Column End Condition-K (e): 1 Load Eccentricity (X-Axis) - ex: 0.5 in Load Eccentricity (Y-Axis) - ey: 0.5 in Axial Load Duration Factor 1.00			

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L+D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	139	psi
Allowable Compressive Stress:	$\mathrm{Fc}=$	709	psi
Eccentricity Moment (X-X Axis):	$\mathrm{Mx}-\mathrm{ex}=$	60	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My -ey $=$	60	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	$\mathrm{Fbx}=$	1350	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	$\mathrm{Fby}=$	0	psi
Allowable Bending Stress (Y-Y Axis):	$\mathrm{Fby}=$	1350	psi
Combined Stress Factor:	$\mathrm{CSF}=$	$\mathbf{0 . 2 5}$	

AXIAL LOADING

| Live Load: | $\mathrm{PL}=840 \mathrm{lb}{ }^{*}$ |
| :--- | :--- | :--- |
| Dead Load: | $\mathrm{PD}=605 \mathrm{lb}{ }^{*}$ |
| Column Self Weight: | $\mathrm{CSW}=16 \mathrm{lb}$ |
| Total Axial Load: | $\mathrm{PT}=1461 \mathrm{lb}$ |
| * Load obtained from | Load Tracker. See Summary Report for details. |

```
12/6/2022
Project:
```

 UPPER FLOOR FRAMING CONNECTIONS
 DECK LEDGER
LOAD = (40 PSF + 12 PSF)(2.5')(1.33')
LOAD $=173 \mathrm{LB}$
1/4" X 3 1/2" SDS CAPACITY = 340 LB > 173 LB

```
STAIR LEDGER
LOAD = (100 PSF + 25 PSF)(4')(1.33')
LOAD = 665 LB
(2) 1/4" X 3 1/2" SDS CAPACITY = 680 LB > 665 LB
```

DECK JOISTS TO LEDGER
RXN = 173 LB
LU28 CAPACITY = 955 LB > 173 LB

STAIR JOISTS TO LEDGER

RXN $=666$ LB
LU210 CAPACITY $=1195$ LB $>666 \mathrm{LB}$

```
FB1 TO FB2
```

RXN $=1006$ LB
HUC212-2 CAPACITY = 2385 LB > 1006 LB

```
FB2 TO WALL
RXN = 1450 LB
(3) 3/4" BOLT CAPACITY = (3)*(500 LB)
(3) 3/4" BOLT CAPACITY = 1500 LB > 1450 LB
```


MIDDLE FLOOR FRAMING GUIDE

(SEE UPPER FLOOR FRAMING GUIDE FOR MEMBERS NOT SPECIFIED)

Project: 22-0411 3-STORY
Location: MIDDLE JOIST CHECK
Floor Joist
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 10.0 \mathrm{FT}$ @ 16 O.C.
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 36.1\%
Controlling Factor: Shear

DEFLECTIONS		Center	
Live Load	0.06 I	IN L/1950	
Dead Load	0.04 i	in	
Total Load	0.10	IN L/1163	
Live Load Deflec	tion Crit	Criteria: L/480	Total Load Deflection Criteria: L/360
REACTIONS	A	A \quad B	
Live Load		$8 \mathrm{lb} \quad 855 \mathrm{lb}$	
Dead Load		7 lb 633 lb	
Total Load		5 lb 1488 lb	
Bearing Length	0.56	6 in 1.59 in	
Dead Load		155 plf 475	
Total Load		394 plf 1116	

MATERIAL PROPERTIES

\#2 - Douglas-Fir-Larch

Base Values		Adjusted	
$\mathrm{Fb}=$	900 psi	$\mathrm{Fb}^{\prime}=$	1035
$C d=1.00 \quad C F=1.00 \mathrm{Cr}=1.15$			
$\mathrm{Fv}=$	180 psi	Fv' $=$	180
$C d=1.00$			
$\mathrm{E}=$	1600 ksi	E' =	1600
Fc- ${ }^{\text {- }}=$	625 psi	Fc-	625

JOIST DATA	Center	
Span Length	10 ft	
Unbraced Length-Top	0 ft	
Unbraced Length-Bottom	0 ft	
Floor sheathing applied to top of joists-top of joists fully braced.		
Floor Duration Factor	1.00	

JOIST LOADING		
Uniform Floor Loading		Center
Live Load	LL =	40 psf
Dead Load	DL =	25 psf
Total Load	TL =	65 psf
TL Adj. For Joist Spacing wT $=86.7$ plfWall Loading		
Wall One		
Live Load (\perp to Joists):	L1 =	480 plf
Dead Load ($\perp_{\text {to Joists) }}$):D1 =	380 plf
Load Location	X 1 =	9.2

Location: LFB1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 10.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 123.7\%
Controlling Factor: Shear

CAUTIONS

* Laminations are to be fully connected to provide uniform transfer of loads to all members

LOADING DIAGRAM
A

6.3 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:

 $-1811 \mathrm{lb}$At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	24.32 in 3	63.28 in 3
Area (Shear):	$15.09 \mathrm{in2}$	33.75 in 2
Moment of Inertia (deflection):	42.02 in 4	355.96 in 4
Moment:	$1824 \mathrm{ft-lb}$	4746 ft -lb
Shear:	-1811 lb	4050 lb

Project: 22-0411 3-STORY
Location: LHDR 1
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 37.8\%
Controlling Factor: Shear

DEFLECTIONS Center			Total Load Deflection Criteria: L/240
Live Load $0.01 \mathrm{IN} \mathrm{L/7810}$			
Dead Load 0.00 in			
Total Load 0.01 IN L/4581			
Live Load Deflection Criteria: L/360			
REACTIONS	A	B	
Live Load	2001 lb	1341 lb	
Dead Load	1428 lb	919 lb	
Total Load	3429 lb	2260 lb	
Bearing Length	1.57 in	1.03 in	
BEAM DATA		Center	
Span Length		3.5 ft	
Unbraced Length-	-Top	0 ft	
Unbraced Length-	-Bottom	3.5 ft	
Live Load Duratio	on Factor	1.00	
Notch Depth		0.00	

| LOADING DIAGRAM |
| :--- | :--- |

Project: 22-0411 3-STORY
Location: LHDR 2
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$3.5 \mathrm{IN} \times 11.25 \mathrm{IN} \times 3.5 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 63.8\%
Controlling Factor: Shear

MATERIAL PROPERTIES

\#2-Douglas-Fir-Larch

Bending Stress:	Base Values	Adjusted	
	$\mathrm{Fb}=900 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=$	990 psi
	$C d=1.00 \mathrm{CF}=1.10$		
Shear Stress:	$\mathrm{Fv}=180 \mathrm{psi}$	Fv' $=$	180 psi
	$C d=1.00$		
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=$	1600 ksi
Comp. $\perp^{\text {to Grain: }}$	$\mathrm{Fc}-\perp=625 \mathrm{psi}$		625

Controlling Moment:
 $2524 \mathrm{ft}-\mathrm{lb}$

1.75 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 2885 lb

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:

Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
30.6 in3	73.83 in3
24.04 in2	39.38 in2
19.88 in4	415.28 in4
2524 ft-	609
2885	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 10:05:20 AM

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 10:06:01 AM
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 3.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 61.5\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn $=$	1038 lb
Dead Load: Ve	Vert-DL-Rxn =	791 lb
Total Load: \quad V	Vert-TL-Rxn =	1829 lb
COLUMN DATA		
Total Column Length:	8 ft	
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 8 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:	$\mathrm{y}: \quad 0 \mathrm{ft}$	
Column End Condition-K (e):): $\quad 1$	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES
\#2-Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Actual Compressive Stress:	$\mathrm{Fc}=$	174	psi
Allowable Compressive Stress:	Fc' $=$	568	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	75	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment ($\mathrm{Y}-\mathrm{Y}$ Axis):	My-ey =	75	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$		$\mathrm{ft-lb}$
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\mathrm{My}=$		$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$		psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1350	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby $=$		psi
Allowable Bending Stress (Y-Y Axis):	Fby' $=$	1350	psi
Combined Stress Factor:	CSF =	0.39	

AXIAL LOADING

Live Load:	$\mathrm{PL}=1038 \mathrm{lb}{ }^{*}$
Dead Load:	$\mathrm{PD}=773 \mathrm{lb}{ }^{*}$
Column Self Weight:	$\mathrm{CSW}=18 \mathrm{lb}$
Total Axial Load:	$\mathrm{PT}=1829 \mathrm{lb}$
* Load obtained from Load Tracker. See Summary Report for details.	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 10:06:27 AM
(2) $1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 94.9\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	332 lb
Dead Load: Ve	Vert-DL-Rxn $=$	280 lb
Total Load: Ve	Vert-TL-Rxn $=$	612 lb
COLUMN DATA		
Total Column Length:		
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 8 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:	$y: \quad 0 \mathrm{ft}$	
Column End Condition-K (e):): 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L+D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	37	psi
Allowable Compressive Stress:	$\mathrm{Fc}=$	1053	psi
Eccentricity Moment (X-X Axis):	$\mathrm{Mx}-\mathrm{ex}=$	24	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My -ey $=$	24	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	$\mathrm{Fbx}=$	1170	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	$\mathrm{Fby}=$	0	psi
Allowable Bending Stress (Y-Y Axis):	$\mathrm{Fby}=$	1170	psi
Combined Stress Factor:	$\mathrm{CSF}=$	$\mathbf{0 . 0 5}$	

AXIAL LOADING

Live Load:	$\mathrm{PL}=332 \mathrm{lb}$ *
Dead Load:	$\mathrm{PD}=251 \mathrm{lb}$ *
Column Self Weight:	$\mathrm{CSW}=29 \mathrm{lb}$
Total Axial Load:	$\mathrm{PT}=612 \mathrm{lb}$

* Load obtained from Load Tracker. See Summary Report for details.

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 10:07:06 AM
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 3.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 16.6\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	2001 lb
Dead Load: Ve	Vert-DL-Rxn =	1444 lb
Total Load: Ve	Vert-TL-Rxn $=$	3445 lb
COLUMN DATA		
Total Column Length:		
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 7 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:		
Column End Condition-K (e):): 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Compressive Stress:	Base Values	Adjusted	
	$\mathrm{Fc}=1350 \mathrm{psi}$	$\mathrm{Fc}^{\prime}=$	709 psi
	$C d=1.00 \mathrm{Cf}=1.15$	Cp=0.46	
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=900 \mathrm{psi} \\ & \mathrm{Cd}=1.00 \mathrm{CF}=1.50 \end{aligned}$	Fbx' $=1$	1350 psi
Bending Stress (Y-Y Axis):	$\begin{aligned} & \mathrm{Fby}=900 \mathrm{psi} \\ & C d=1.00 \quad C F=1.50 \end{aligned}$	Fby' $=1$	1350 psi
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1$	1600 ksi
Column Section (X-X Axis):		$\mathrm{dx}=$	3.5 in
Column Section (Y-Y Axis):		dy $=$	3
Area:		A $=$	10.5 in2
Section Modulus (X-X Axis):		Sx $=$	6.13 in3
Section Modulus (Y-Y Axis):		Sy =	2.63 in3
Slenderness Ratio:		Lex/dx =	$=24$
		Ley/dy =	=

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L+ D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	328	psi
Allowable Compressive Stress:	$\mathrm{Fc}=$	709	psi
Eccentricity Moment (X-X Axis):	$\mathrm{Mx}-\mathrm{ex}=$	143	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	$\mathrm{My}-\mathrm{ey}=$	143	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft-lb}$
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	psi
Allowable Bending Stress (X-X Axis):	$\mathrm{Fbx}=$	1350	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	$\mathrm{Fby}=$	0	psi
Allowable Bending Stress (Y-Y Axis):	$\mathrm{Fby}=$	1350	psi
Combined Stress Factor:	CSF =	$\mathbf{0 . 8 3}$	

AXIAL LOADING

Live Load:	$\mathrm{PL}=2001 \mathrm{lb}$ *
Dead Load:	$\mathrm{PD}=1428 \mathrm{lb}$ *
Column Self Weight:	$\mathrm{CSW}=16 \mathrm{lb}$
Total Axial Load:	$\mathrm{PT}=3445 \mathrm{lb}$

* Load obtained from Load Tracker. See Summary Report for details.

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 10:07:32 AM
(2) $1.5 \mathrm{IN} \times 3.5 \mathrm{IN} \times 7.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 35.9\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	1680 lb
Dead Load: Ve	Vert-DL-Rxn $=$	1221 lb
Total Load: Ve	Vert-TL-Rxn $=$	2901 lb
COLUMN DATA		
Total Column Length:		
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 7 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:		
Column End Condition-K (e):): 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Compressive Stress:	Base Values	Adjusted	
	$\mathrm{Fc}=1350 \mathrm{psi}$	$\mathrm{Fc}^{\prime}=$	709 psi
	$C d=1.00 \mathrm{Cf}=1.15$	Cp=0.46	
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=900 \mathrm{psi} \\ & \mathrm{Cd}=1.00 \mathrm{CF}=1.50 \end{aligned}$	Fbx' $=1$	1350 psi
Bending Stress (Y-Y Axis):	$\begin{aligned} & \mathrm{Fby}=900 \mathrm{psi} \\ & C d=1.00 \quad C F=1.50 \end{aligned}$	Fby' $=1$	1350 psi
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1$	1600 ksi
Column Section (X-X Axis):		$\mathrm{dx}=$	3.5 in
Column Section (Y-Y Axis):		dy $=$	3
Area:		A $=$	10.5 in2
Section Modulus (X-X Axis):		Sx $=$	6.13 in3
Section Modulus (Y-Y Axis):		Sy =	2.63 in3
Slenderness Ratio:		Lex/dx =	$=24$
		Ley/dy =	=

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	276	psi
Allowable Compressive Stress:	Fc' $=$	709	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	120	ft-l
Eccentricity Moment (Y-Y Axis):	My-ey =	120	ft-lb
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$		ft
Moment Due to Lateral Loads (Y-Y Axis):	My =		ft-lb
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1350	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =		
Allowable Bending Stress (Y-Y Axis):	Fby' =	1350	psi
Combined Stress Factor:	CSF =	0.64	

AXIAL LOADING

Live Load:	$\mathrm{PL}=1680 \mathrm{lb}{ }^{*}$
Dead Load:	$\mathrm{PD}=1205 \mathrm{lb}{ }^{*}$
Column Self Weight:	$\mathrm{CSW}=16 \mathrm{lb}$
Total Axial Load:	$\mathrm{PT}=2901 \mathrm{lb}$
* Load obtained from Load Tracker. See Summary Report for details.	

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 11:33:58 AM
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 3.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 54.6\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	1600 lb
Dead Load: Ve	Vert-DL-Rxn =	448 lb
Total Load: Ve	Vert-TL-Rxn $=$	2048 lb
COLUMN DATA		
Total Column Length:		
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 8 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:	$y: \quad 0 \mathrm{ft}$	
Column End Condition-K (e):): 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Compressive Stress:	Base Values	Adjusted
	$\mathrm{Fc}=1350 \mathrm{psi}$	$\mathrm{Fc}^{\prime}=568 \mathrm{psi}$
	$C d=1.00 \mathrm{Cf}=1.15$	$C p=0.37$
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=900 \mathrm{psi} \\ & \mathrm{Cd}=1.00 \mathrm{CF}=1.50 \end{aligned}$	Fbx' $=1350 \mathrm{psi}$
Bending Stress (Y-Y Axis):	$\begin{aligned} & \mathrm{Fby}=900 \mathrm{psi} \\ & C d=1.00 \quad \mathrm{CF}=1.50 \end{aligned}$	Fby' $=1350 \mathrm{psi}$
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1600 \mathrm{ksi}$
Column Section (X-X Axis):		$\mathrm{dx}=\quad 3.5$
Column Section (Y-Y Axis):		$\mathrm{dy}=3$
Area:		$\mathrm{A}=10.5$
Section Modulus (X-X Axis):		$\mathrm{Sx}=\quad 6.13$
Section Modulus (Y-Y Axis):		Sy $=\quad 2.63$
Slenderness Ratio:		Lex/dx $=27.43$
		Ley/dy $=0$

Column Calculations (Controlling Case Only):

Actual Compressive Stress:	$\mathrm{Fc}=$	195	psi
Allowable Compressive Stress:	Fc' $=$	568	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	85	$\mathrm{ft-lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	85	$\mathrm{ft-lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$		$\mathrm{ft-lb}$
Moment Due to Lateral Loads (Y-Y Axis):	My =		$\mathrm{ft-lb}$
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1350	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =		psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	1350	psi
Combined Stress Factor:	CSF =	0.45	

AXIAL LOADING

Live Load:	$\mathrm{PL}=1600 \mathrm{lb}{ }^{*}$
Dead Load:	$\mathrm{PD}=430 \mathrm{lb}$ *
Column Self Weight:	$\mathrm{CSW}=18 \mathrm{lb}$
Total Axial Load:	$\mathrm{PT}=2048 \mathrm{lb}$

* Load obtained from Load Tracker. See Summary Report for details.

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 11:34:29 AM
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 73.0\%

CAUTIONS

* Laminations to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1

VERTICAL REACTIONS		
Live Load: Ve	Vert-LL-Rxn =	2194 lb
Dead Load: Ve	Vert-DL-Rxn =	684 lb
Total Load: Ve	Vert-TL-Rxn =	2878 lb
COLUMN DATA		
Total Column Length:		
Unbraced Length (X-Axis) Lx:	$\mathrm{x}: \quad 8 \mathrm{ft}$	
Unbraced Length (Y-Axis) Ly:	$y: \quad 0 \mathrm{ft}$	
Column End Condition-K (e):) 1	
Load Eccentricity (X-Axis) - ex	ex: 0.5 in	
Load Eccentricity (Y-Axis) - ey	ey: 0.5 in	
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Douglas-Fir-Larch

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (+ D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	174	psi
Allowable Compressive Stress:	Fc' $=$	1053	psi
Eccentricity Moment (X-X Axis):	Mx -ex $=$	119	Ib
Eccentricity Moment (Y-Y Axis):	My-ey =	119	$\mathrm{ft-lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft-lb}$
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\mathrm{My}=$	0	$\mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	1170	psi
Bending Stress Lateral Loads Only ($\mathrm{Y}-\mathrm{Y}$ Axis):	Fby $=$	0	psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	1170	psi
Combined Stress Factor:	CSF =	0.27	

AXIAL LOADING

Live Load:	$\mathrm{PL}=2194 \mathrm{lb}$ *
Dead Load:	$\mathrm{PD}=655 \mathrm{lb}$ *
Column Self Weight:	$\mathrm{CSW}=29 \mathrm{lb}$
Total Axial Load:	$\mathrm{PT}=2878 \mathrm{lb}$

* Load obtained from Load Tracker. See Summary Report for details.

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:18:02 PM
$5.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Hem-Fir - Dry Use
Section Adequate By: 86.7\%

VERTICAL REACTIONS			
Live Load:	Vert-LL-Rxn $=$	1200	lb
Dead Load:	Vert-DL-Rxn $=$	566	lb
Total Load:	Vert-TL-Rxn $=$	1766	lb

COLUMN DATA		
Total Column Length:	8	ft
Unbraced Length (X-Axis) Lx:	8	ft
Unbraced Length (Y-Axis) Ly:	8	ft
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis) - ex:	0.5	in
Load Eccentricity (Y-Axis) - ey:	0.5	in
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES

\#2 - Hem-Fir

Compressive Stress:	Base Values	Adjusted	
	$\mathrm{Fc}=575 \mathrm{psi}$	$\mathrm{Fc}^{\prime}=$	492 psi
	$C d=1.00 \mathrm{Cp}=0.86$		
Bending Stress (X-X Axis):	$\begin{aligned} & \mathrm{Fbx}=575 \mathrm{psi} \\ & C d=1.00 \quad C F=1.00 \end{aligned}$	Fbx' =	575 psi
Bending Stress ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\begin{aligned} & \text { Fby }=575 \mathrm{psi} \\ & C d=1.00 \mathrm{CF}=1.00 \end{aligned}$	Fby' =	575 psi
Modulus of Elasticity:	$\mathrm{E}=1100 \mathrm{ksi}$	$\mathrm{E}^{\prime}=$	1100 ksi
Column Section (X-X Axis):		$\mathrm{dx}=$	5.5
Column Section (Y-Y Axis):		dy $=$	5.5
Area:		A $=$	30.25
Section Modulus (X-X Axis):		Sx =	27.73
Section Modulus (Y-Y Axis):		Sy =	27.73
Slenderness Ratio:		Lex/dx $=$	$=17.45$
		Ley/dy	$=17.45$

Column Calculations (Controlling Case Only):

Actual Compressive Stress:	$\mathrm{Fc}=$	58	psi
Allowable Compressive Stress:	Fc' $=$	492	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	72	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	72	$\mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	$\mathrm{ft-lb}$
Moment Due to Lateral Loads ($\mathrm{Y}-\mathrm{Y}$ Axis):	$\mathrm{My}=$	0	ft -lb
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	0	ps
Allowable Bending Stress (X-X Axis):	Fbx' $=$	575	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =	0	psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	575	psi
Combined Stress Factor:	CSF =	0.13	

AXIAL LOADING

| Live Load: | $\mathrm{PL}=1200 \mathrm{lb}{ }^{*}$ |
| :--- | :--- | :--- |
| Dead Load: | $\mathrm{PD}=521 \mathrm{lb}{ }^{*}$ |
| Column Self Weight: | $\mathrm{CSW}=45 \mathrm{lb}$ |
| Total Axial Load: | $\mathrm{PT}=1766 \mathrm{lb}$ |
| ${ }^{*}$ Load obtained from | Load Tracker. See Summary Report for details. |

DESCRIPTION: LOWER HDR 1 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021
General Information

Maximum Reactions

Note: Only non-zero reactions are listed.

Load Combination	X-X Axis R @ Base	Reaction @ Top	k	Y-Y Axis @ Base	Reaction @ Top	Axial Reaction @ Base	My - End Moments k-ft @ Base @ Top	Mx - End Moments @ Base @ Top
D Only	-0.009	0.009		-0.009	0.009	1.550		
+D+L	-0.010	0.010		-0.010	0.010	1.672		
+D+S	-0.020	0.020		-0.020	0.020	3.331		
+D+0.750L	-0.010	0.010		-0.010	0.010	1.641		
+D+0.750L+0.750S	-0.018	0.018		-0.018	0.018	2.977		
+0.60D	-0.005	0.005		-0.005	0.005	0.930		
L Only	-0.001	0.001		-0.001	0.001	0.122		
S Only	-0.011	0.011		-0.011	0.011	1.781		

DESCRIPTION: LOWER HDR 2 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021
General Information

Maximum Reactions

Note: Only non-zero reactions are listed.

Load Combination	X-X Axis R @ Base	Reaction @ Top	k	Y-Y Axis @ Base	Reaction @ Top	Axial Reaction @ Base	My - End Moments k-ft @ Base @ Top	Mx - End Moments @ Base @ Top
D Only	-0.006	0.006		-0.006	0.006	1.025		
+D+L	-0.009	0.009		-0.009	0.009	1.469		
+D+S	-0.012	0.012		-0.012	0.012	1.979		
+D+0.750L	-0.008	0.008		-0.008	0.008	1.358		
+D+0.750L+0.750S	-0.012	0.012		-0.012	0.012	2.073		
+0.60D	-0.004	0.004		-0.004	0.004	0.615		
L Only	-0.003	0.003		-0.003	0.003	0.444		
S Only	-0.006	0.006		-0.006	0.006	0.954		

DESCRIPTION: LOWER HDR 3 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021
General Information

Maximum Reactions

Note: Only non-zero reactions are listed.

Load Combination	X-X Axis R @ Base	Reaction @ Top	k	Y-Y Axis @ Base	Reaction @ Top	Axial Reaction @ Base	My - End Moments k-ft @ Base @ Top	Mx - End Moments @ Base @ Top
D Only	-0.004	0.004		-0.004	0.004	0.740		
+D+L	-0.006	0.006		-0.006	0.006	1.058		
+D+S	-0.008	0.008		-0.008	0.008	1.421		
+D+0.750L	-0.006	0.006		-0.006	0.006	0.978		
+D+0.750L+0.750S	-0.009	0.009		-0.009	0.009	1.489		
+0.60D	-0.003	0.003		-0.003	0.003	0.444		
L Only	-0.002	0.002		-0.002	0.002	0.318		
S Only	-0.004	0.004		-0.004	0.004	0.681		

DESCRIPTION: LOWER HDR 4 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021
General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
HDR 4 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=1.284, \mathrm{~L}=0.7470, \mathrm{~S}=1.426 \mathrm{k}$
HDR 4: Axial Load at $7.0 \mathrm{ft}, \mathrm{D}=0.2980, \mathrm{~L}=0.7470 \mathrm{k}$

DESIGN SUMMARY

Bending \& Shear Check Results		
PASS	Max. Axial+Bending Stress Ratio	$0=0.8334: 1$
	Load Combination	+D+0.750L+0.750S
	Governing NDS Formolap + Mxx +	+ Myy, NDS Eq. 3.9-
	Location of max.above base	6.953 ft
	At maximum location values are	
	Applied Axial	3.785 k
	Applied Mx	-0.1206 k-ft
	Applied My	-0.1206 k-ft
	Fc : Allowable	1,279.47 psi
PASS	Maximum Shear Stress Ratio = Load Combination	$\begin{array}{r} 0.01523: 1 \\ +D+0.750 L+0.750 \mathrm{~S} \end{array}$
	Location of max.above base	7.0 ft
	Applied Design Shear	3.153 psi
	Allowable Shear	207.0 psi

Maximum SERVICE Lateral Load Reactions ..

Top along Y-Y	0.01734 k	Bottom along Y-Y	0.01734 k
Top along X-X	0.01734 k	Bottom along X-X	0.01734 k

Maximum SERVICE Load Lateral Deflections . . .

Along Y-Y $\quad-0.01999$ in at 4.087 ft above base for load combination: $+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}$
Along X-X $\quad-0.2687$ in at 4.087 ft above base for load combination : +D+0.750L+0.750S
Other Factors used to calculate allowable stresses ...
Bending Compression Tension

DESCRIPTION: LOWER HDR 5 TRIMMERS

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021
General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 12.517 lbs * Dead Load Factor
AXIAL LOADS . . .
HDR 5 TRIMMER: Axial Load at $7.0 \mathrm{ft}, \mathrm{Xecc}=0.50 \mathrm{in}, \mathrm{Yecc}=0.50 \mathrm{in}, \mathrm{D}=1.030, \mathrm{~L}=0.3630, \mathrm{~S}=1.223 \mathrm{k}$
HDR 5: Axial Load at $7.0 \mathrm{ft}, \mathrm{D}=0.1810, \mathrm{~L}=0.3630 \mathrm{k}$

DESIGN SUMMARY

Maximum Reactions							Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction		k	Y-Y Axis Reaction @ Base @ Top		Axial Reaction @ Base	My - End Moments k-ft Mx - End Moments @ Base @ Top @ Base @ Top			
D Only	-0.006	0.006		-0.006	0.006	1.224				
+D+L	-0.008	0.008		-0.008	0.008	1.950				
+D+S	-0.013	0.013		-0.013	0.013	2.447				
+D+0.750L	-0.008	0.008		-0.008	0.008	1.768				
+D+0.750L+0.750S	-0.013	0.013		-0.013	0.013	2.685				
+0.60D	-0.004	0.004		-0.004	0.004	0.734				
L Only	-0.002	0.002		-0.002	0.002	0.726				
S Only	-0.007	0.007		-0.007	0.007	1.223				

Project: 22-0411 3-STORY
Location: TYP EXTERIOR FOOTINGS
Footing
[2015 International Building Code(2015 NDS)]
Footing Size: 24.0 IN Wide x 8.0 IN Deep Continuous Footing With 8.0 IN Thick
x 18.0 IN Tall Stemwall
LongitudinalReinforcement: (2) Continuous \#4 Bars
TransverseReinforcement: \#4 Bars @ 12.00 IN. O.C. (unnecessary)
Section Footing Design Adequate

FOOTING PROPERTIES	
Allowable Soil Bearing Pressure:	Qs $=1500 \mathrm{psf}$
Concrete Compressive Strength:	F 'c $=2500 \mathrm{psi}$
Reinforcing Steel Yield Strength:	$\mathrm{Fy}=40000 \mathrm{psi}$
Concrete Reinforcement Cover:	$\mathrm{c}=3$ in
FOOTING SIZE	
Width:	$\mathrm{W}=24 \mathrm{in}$
Depth:	Depth $=8$ in
Effective Depth to Top Layer of Steel:	$\mathrm{d}=4.25 \mathrm{in}$

\section*{STEMWALL SIZE
 | Stemwall Width: | 8 in |
| :--- | ---: |
| Stemwall Height: | 18 in |
| Stemwall Weight: | 150 pcf |}

FOOTING CALCULATIONS

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 12:45:48 PM

LOADING DIAGRAM

FOOTING LOADING

Live Load:	$\mathrm{PL}=1272$ plf
Dead Load:	$\mathrm{PD}=1109 \mathrm{plf}$
Total Load:	$\mathrm{PT}=2531 \mathrm{plf}$
Ultimate Factored Load:	$\mathrm{Pu}=3546$ plf

Project: 22-0411 3-STORY
Location: STAIR FOOTINGS
Footing
[2015 International Building Code(2015 NDS)]
Footing Size: 16.0 IN Wide x 8.0 IN Deep Continuous Footing
LongitudinalReinforcement: (2) Continuous \#4 Bars
TransverseReinforcement: \#4 Bars @ 12.00 IN. O.C. (unnecessary)
Section Footing Design Adequate

FOOTING PROPERTIES	
Allowable Soil Bearing Pressure:	Qs = 1500 psf
Concrete Compressive Strength:	$\mathrm{F} \mathrm{c}=2500 \mathrm{psi}$
Reinforcing Steel Yield Strength:	$\mathrm{Fy}=40000 \mathrm{psi}$
Concrete Reinforcement Cover:	$\mathrm{c}=3 \mathrm{in}$
FOOTING SIZE	
Width:	$\mathrm{W}=16 \mathrm{in}$
Depth:	Depth $=8$ in
Effective Depth to Top Layer of Steel:	$\mathrm{d}=4.25 \mathrm{in}$

STEMWALL SIZE	
Stemwall Width:	0 in
Stemwall Height:	0 in
Stemwall Weight:	150 pcf

FOOTING CALCULATIONS

Bearing Calculations:

Ultimate Bearing Pressure:	Qu $=$	956 psf
Effective Allowable Soil Bearing Pressure:	Qe =	1400 psf
Width Required:	Wreq =	0.91 ft
Beam Shear Calculations (One Way Shear):		
Beam Shear:	Vu1 =	434 lb
Allowable Beam Shear:	Vc1 $=$	3825 lb
Transverse Direction:		
Bending Calculations:		
Factored Moment:	$\mathrm{Mu}=$	3700 in-lb
Nominal Moment Strength:	$\mathrm{Mn}=$	$0 \mathrm{in}-\mathrm{lb}$
Reinforcement Calculations:		
Concrete Compressive Block Depth:	$\mathrm{a}=$	0.30 in
Steel Required Based on Moment:	As(1) =	0.02 in2
Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.4)	As(2) =	0.19 in2
Controlling Reinforcing Steel:	As-reqd =	0.19 in2
Selected Reinforcement: Trans:	\#4's @ 12	in. o.c.
Reinforcement Area Provided:	As =	0.19 in2
Development Length Calculations:		
Development Length Required:	Ld =	15 in
Development Length Supplied:	Ld-sup =	5 in

Longitudinal Direction:

Reinforcement Calculations:

Min. Code Req'd Reinf. Shrink./Temp. (ACl-10.5.4): As(2) $=0.26$ in2
Controlling Reinforcing Steel:
Selected Reinforcement:
Reinforcement Area Provided:

As-reqd $=0.26 \mathrm{in} 2$
Longitudinal: (2) Cont. \#4 Bars

$$
\text { As }=0.39 \mathrm{in} 2
$$

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/6/2022 12:46:10 PM

Project: 22-0411 3-STORY
Location: TYP INTERIOR FOOTINGS
Footing
[2015 International Building Code(2015 NDS)]
Footing Size: 24.0 IN Wide $\times 10.0$ IN Deep Continuous Footing
LongitudinalReinforcement: (3) Continuous \#4 Bars
TransverseReinforcement: \#4 Bars @ 9.00 IN. O.C. (unnecessary)
Section Footing Design Adequate

FOOTING PROPERTIES	
Allowable Soil Bearing Pressure:	Qs $=1500 \mathrm{psf}$
Concrete Compressive Strength:	$\mathrm{F}^{\prime} \mathrm{c}=2500 \mathrm{psi}$
Reinforcing Steel Yield Strength:	$\mathrm{Fy}=40000 \mathrm{psi}$
Concrete Reinforcement Cover:	$\mathrm{c}=3 \mathrm{in}$
FOOTING SIZE	
Width:	W = 24 in
Depth:	Depth $=10$ in
Effective Depth to Top Layer of Steel:	$\mathrm{d}=6.25$ in
STEMWALL SIZE	
Stemwall Width: 0 in	
Stemwall Height: 0 in	
Stemwall Weight: 150 pcf	

Development Length Calculations:

Development Length Required:
Development Length Supplied:

Qu $=$	1242 psf
$\mathrm{Qe}=$	1375 psf
$\mathrm{Wreq}=$	1.81 ft
$\mathrm{Vu}=$	852 lb
$\mathrm{Vc} 1=$	5625 lb

Transverse Direction:

Bending Calculations:

Factored Moment:	$\mathrm{Mu}=$	10667 in-lb
Nominal Moment Strength:	$\mathrm{Mn}=$	0 in-lb
Reinforcement Calculations:		
Concrete Compressive Block Depth:	$\mathrm{a}=$	0.38 in
Steel Required Based on Moment:	As(1) =	0.05 in2
Min. Code Req'd Reinf. Shrink./Temp. (ACl-10	0.5.4) $\mathrm{As}(2)=$	0.24 in2
Controlling Reinforcing Steel:	As-reqd =	0.24 in2
Selected Reinforcement:	Trans: \#4's @ 9.0 in. o.c.	
Reinforcement Area Provided:	As =	0.24 in2
Development Length Calculations:		
Development Length Required:	Ld =	15 in
Development Length Supplied:	Ld-sup =	9 in

Longitudinal Direction:

Reinforcement Calculations:

Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.4): As(2) $=0.48$ in2
Controlling Reinforcing Steel:
Selected Reinforcement:
Reinforcement Area Provided:

As-reqd $=0.48 \mathrm{in} 2$
Longitudinal: (3) Cont. \#4 Bars As $=0.59$ in2

Max Beaudoin
Stability Engineering Inc.
777 NE 2nd Street
Corvallis OR 97333
StruCalc Version 10.0.1.6
12/5/2022 3:56:32 PM

Project: 22-0411 3-STORY
Location: DECK FOOTINGS
Footing
[2015 International Building Code(2015 NDS)]
Footing Size: 1.5 FT x 1.5 FT x 12.00 IN
Reinforcement: \#4 Bars @ 5.75 IN. O.C. E/W / (3) min.
Section Footing Design Adequate

Max Beaudoin Stability Engineering Inc. 777 NE 2nd Street Corvallis OR 97333	12/5/2022 3:46:15 PM

FOOTING PROPERTIES		
Allowable Soil Bearing Pressure:	Qs $=1500 \mathrm{psf}$	
Concrete Compressive Strength:	F'c $=2500 \mathrm{psi}$	
Reinforcing Steel Yield Strength:	$\mathrm{Fy}=40000 \mathrm{psi}$	
Concrete Reinforcement Cover:	$\mathrm{C}=$	3 in
FOOTING SIZE		
Width:	$\mathrm{W}=$	1.5 ft
Length:	$\mathrm{L}=$	1.5 ft
Depth:	Depth $=12 \mathrm{in}$	
Effective Depth to Top Layer of Steel:	$\mathrm{d}=$	8.25 in

COLUMN AND BASEPLATE SIZE	
Column Type:	Wood
Column Width:	$\mathrm{m}=5.5 \mathrm{in}$
Column Depth:	$\mathrm{n}=5.5 \mathrm{in}$

FOOTING CALCULATIONS

Bearing Calculations:		
Ultimate Bearing Pressure:	Qu =	785 psf
Effective Allowable Soil Bearing Pressure:	$\mathrm{Qe}=$	1350 psf
Required Footing Area:	Areq =	1.31 sf
Area Provided:	$\mathrm{A}=$	2.25 sf
Baseplate Bearing:		
Bearing Required:	Bear =	2599 lb
Allowable Bearing:	Bear-A =	83566 lb
Beam Shear Calculations (One Way Shear):		
Beam Shear:	Vu1 =	108 lb
Allowable Beam Shear:	Vc1 $=$	11138 lb
Punching Shear Calculations (Two Way Shear):		
Critical Perimeter:	Bo =	55 in
Punching Shear:	Vu2 =	1082 lb
Allowable Punching Shear (ACI 11-35):	vc2-a =	102094 lb
Allowable Punching Shear (ACI 11-36):	vc2-b =	136125 lb
Allowable Punching Shear (ACI 11-37):	$\mathrm{vc} 2-\mathrm{c}=$	68063 lb
Controlling Allowable Punching Shear:	vc2 $=$	68063 lb
Bending Calculations:		
Factored Moment:	$\mathrm{Mu}=$	5848 in-
Nominal Moment Strength:	$\mathrm{Mn}=$	168334 in-l
Reinforcement Calculations:		
Concrete Compressive Block Depth:	$\mathrm{a}=$	0.62 in
Steel Required Based on Moment:	As(1) =	0.02 in2
Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.4):	$\mathrm{As}(2)=$	0.43 in2
Controlling Reinforcing Steel:	As-reqd =	0.43 in 2
Selected Reinforcement: \#4's @ 5.8	8 in . o.c. e/w	(3) Min.
Reinforcement Area Provided:	As $=$	0.59 in2
Development Length Calculations:		
Development Length Required:	Ld =	15 in
Development Length Supplied:	Ld-sup =	6 in

floor ive Looos:

 WOOP FAME SHEARNALLS
Citick

SOIL NOTES

WOOD GENERAL NOTES

CONCRETE NOTES

 concerte acoregrie shall coneoru to astu c. 33

 - wibe wia finic stall have mimumeno ano

 conceres specal wsection reourements

EXIT ACCESS TRAVEL DISTANCE

CODE SUMMARY


```
M
```



```
Mals,
```


E., SPRMMLERE:

OTAL OCOPANTI =0
RECOHED WOTH O20 OEG
ACTUAE EXT WOTH $=$ S6

Ser table 1004.1.1 maxmum floor afea perococupant

ноом	ABEA (SF)	occupancr Per 1094.1	
stopy 3	${ }_{1953}$	200s.f.ioce.	10
stook 2	${ }_{1953}$	200s.f.ioc.	10
stook 1	${ }_{1958}$	200s.f.ioc.	10
		total	${ }^{30}$

(A. FIRST FLOOR LAYOUT
(120

(A) SECOND \& THIRD FLOOR LAYOUT

TYPE A TUB SHOWER FLOOR PLAN
(UNIT MIN.)
(A)

 (T) TMP IRTH LOOR UNLESS TYPEA)

(D) 2ND FLOOR PLAN (TYP.)

A. TYPICAL INTERIOR WALL SECTION

(B) TYPICAL EXTERIOR WALL SECTION (JOISTS PERP.)

(C) FIRE ACCESS DETAIL - 3 STORY

ROOF FRAMING NOTES:
A ROOF FRAMING PLAN

(B) GIRDER TRUSS ATTACHEMENT DETAIL

SHear wal scheoules

NOTESIL NMLIS AEST,

9ion

(S $\frac{\text { CHEARWALL }}{\text { Scoll }}$ SILL BOLT DETAIL
(D) WALL TO WALL HOLDOWN (TYP.)
 (54.0) TYPICAL CORNER HOLDOWN DETAIL

Wetland Land Use Notification

OREGON DEPARTMENT OF STATE LANDS
775 Summer Street NE, Suite 100, Salem, OR 97301-1279
Phone: (503) 986-5200
This form is to be completed by planning department staff for mapped wetlands and waterways.

* Required Field (?) Tool Tips

Responsible Jurisdiction

City of County of
Municipality*
Date *

Staff Contact
First Name*
Jeff
Phone * (?)
$503-738-7100$
Applicant

First Name*
Last Name*
Ryan
Osburn
Applicant Organization Name
(if applicable)
Cross Creek
Mailing Address*
Street Address
33485 SW Old Pine Dr
Address Line 2
City State

Warrenton OR
Postal / Zip Code Country
97146 USA

Phone (?) Email (?)
503-738-2522
Is the Property Owner name and address the same as the Applicant? *
No Yes
Activity Location

To add additional tax map and lot information, please click the "add" button below.

Address

Street Address
2315 N Roosevelt Dr
Address Line 2

City	State
Seaside	OR
Postal / Zip Code	Country
97138	USA

County*
 Adjacent Waterbody

Clatsop
Neawanna Creek

Proposed Activity

Prior to submitting, please ensure proposed activity will involve physical alterations to the land and/or new construction or expansion of footprint of existing structures.

```
Local Case File #* (?)
769-23-000030-PLNG

\section*{Zoning}

C-3

\section*{Proposed}
```

Building Permit (new structures)

```
```

```
Building Permit (new structures)
```

```
\(\square\) Grading Permit
(2) Site Plan Approval
\(\square\) Other (please describe)Conditional use Permit Planned Unit DevelopmentSubdivision

\section*{Applicant's Project Description and Planner's Comments: *}

The applicant is resubmitting a project that was reviewed in 2021 for a apartment complex and subdivision located at the listed address.

\section*{Required attachments with site marked: Tax map and legible, scaled site plan map. (?) \\ 709.63KB} tp6_10_15BA.pdf

\section*{Required attachments with site marked: Tax map and legible, scaled site plan map. (?)}

Preliminary Plat-Site Plan-Utilities.pdf
4.74MB

\section*{Additional Attachments}

\section*{Date}

6/12/2023

\section*{Response Page}

Department of State Lands (DSL) WN\#*
WN2023-0475
Responsible Jurisdiction
\begin{tabular}{lllll} 
Staff Contact & Jurisdiction Type & & \begin{tabular}{l} 
Municipality \\
Seff Flory \\
Seaside
\end{tabular} \\
\begin{tabular}{llll} 
Local case file \# \\
769-23-000030-PLNG
\end{tabular} & & \begin{tabular}{l} 
County \\
Clatsop
\end{tabular} & \\
Activity Location & & & \\
Township & Range & Section & 15 & QQ section
\end{tabular}

Street Address
2315 N Roosevelt Dr
Address Line 2
City
State / Province / Region
Seaside
Postal / Zip Code
97138
OR

Country

Latitude Longitude
46.009207
-123.912541

\section*{Wetland/Waterway/Other Water Features}
- There are/may be wetlands, waterways or other water features on the property that are subject to the State RemovalFill Law based upon a review of wetland maps, the county soil survey and other available information.

The National Wetlands Inventory shows wetland, waterway or other water features on the property
\(\square\) The county soil survey shows hydric (wet) soils on the property. Hydric soils indicate that there may be wetlands.
\(\square\) The property includes or is adjacent to designated Essential Salmonid Habitat.

\section*{Your Activity}

It appears that the proposed project may impact Essential Salmonid Habitat and, therefore, may require a State permit.

\section*{Applicable Oregon Removal-Fill Permit Requirement(s)}A state permit is required for any amount of fill, removal, and/or other ground alteration in Essential Salmonid Habitat and within adjacent off-channel rearing or high-flow refugia habitat with a permanent or seasonal surface water connection to the stream.

\section*{Closing Information}

\section*{Additional Comments}

A review of the submitted plans show that the development appears to come to the edge of the wetland boundary identified on the 2021 delineation (WD2021-0124). Given that the project is adjacent to Neawanna Creek, an Essential Salmonid waterway, the Department recommends contacting Dan Cary, Aquatic Resource Coordinator at (503) 986-5302 to discuss the project. and determine if the project avoids impacts to ESH waters and whether a No-State Permit letter is required for the project.

For your information, the onsite stormwater pond was determined to be jurisdictional (see the 2021 delineation).
This is a preliminary jurisdictional determination and is advisory only.

This report is for the State Removal-Fill law only. City or County permits may be required for the proposed activity.A Federal permit may be required by The Army Corps of Engineers: (503)808-4373

\section*{Contact Information}
- For information on permitting, use of a state-owned water, wetland determination or delineation report requirements please contact the respective DSL Aquatic Resource, Proprietary or Jurisdiction Coordinator for the site county. The current list is found at: http://www.oregon.gov/dsl/ww/pages/wwstaff.aspx
- The current Removal-Fill permit and/or Wetland Delineation report fee schedule is found at: https://www.oregon.gov/dsl/WW/Documents/Removal-FillFees.pdf

\section*{Response Date}

7/3/2023

\section*{Response by:}

Chris Stevenson

\section*{Response Phone:}

503-986-5246

From:
Sent:
To:
Cc:
Subject:

STEVENSON Chris * DSL <Chris.STEVENSON@dsl.oregon.gov>
Monday, July 17, 2023 12:12 PM Jeff Flory
'grosburn@hotmail.coim'; 'rbogar@gmail.com'; CARY Dan * DSL; EVANS Daniel * DSL WD2021-0124/WN2023-0475

This sender is trusted.

Jeff,
Dan Cary asked me to follow up on the response to the 2315 N Roosevelt Dr. project (769-23-000030-PLNG).
Dan does not feel that a No State Permit required official response from the Department is necessary. The project map with the wetland land use notice is sufficient to support a conclusion of no impact.

Additionally, I made an error in the determination of the stormwater pond. This pond is not jurisdictional.
Please let me know if you have any further questions.
Chris

Chris Stevenson, PWS
Jurisdictional Coordinator
DSL
(503) 798-7622
```


[^0]: Same day 9 p.m. 2/24/2023. Over occupancy limit on cars. Property is allowed 2 parking spaces for 2 cars.

[^1]: Photo taken by Comm Dev at 7:50 a.m. Friday

[^2]: ${ }^{1}$ Institute of Transportation Engineers (ITE), Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition, 2017.

[^3]: ${ }^{2}$ Institute of Transportation Engineers (ITE), Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition, 2017.

[^4]: 3 Transportation Research Board, Highway Capacity Manual, 6th Edition, 2016.

[^5]: Cross Creek TIS Existing PM
 Synchro 10 Report
 Lancaster Mobley

[^6]: Cross Creek TIS Background PM
 Synchro 10 Report
 Lancaster Mobley

[^7]: Cross Creek TIS Buildout PM

[^8]: Note: Crash reduction factors retrieved from Crash Modification Factors Clearinghouse www.cmfclearinghouse.org and the ODOT HSIP Countermeasures and Crash Reduction Factors https://www.oregon.gov/ODOT/Engineering/Docs TrafficEng/CRF-Appendix.pdf

